AMBULATION, ACTIVITY, AND AFOS Addressing the Ankle to Improve Gait and Function Hands-On Course

Developed and Instructed by:

Amanda Hall, PT, MPT, PCS Board-Certified Pediatric Clinical Specialist

Course Logistics

Lab Clothing: Please have the legs available from the knee through the foot for lab portions. Cover-ups are recommended between lab portions, as room temperatures may vary.
 Fingernails: Short fingernails are recommended for manual therapy techniques.
 Individual This course is a hands-on learning environment in which participants will be performing challenging
 Responsibility: techniques and will be evaluated by and treated by other course participants. It is not possible for the instructor to monitor all participants at all times. It is the responsibility of each participant to monitor and limit their participation as need, both in delivering and receiving techniques.

Course Description

This in-person course focuses on hands-on advanced evaluation and treatment of the foot and ankle to improve gait and function for patients with pediatric, neurologic, and orthopedic health conditions. Participants will practice an organized system to evaluate ankle function using a kinesiopathologic approach, determining key findings to develop a clinical hypothesis. Multiple labs will include the latest evidence-based interventions to improve foot and ankle function for individuals across the movement spectrum, including joint and soft tissue mobilizations, improving strength and motor control of the "foot core", and addressing pain. Participants will also learn hands-on skills for orthotic design as well as foot/ankle taping techniques.

Course Objectives:

At the conclusion of the course, participants should be able to:

- 1. Analyze foot and ankle exam findings including gait kinematics, neuromotor function, and musculoskeletal findings to design individualized treatment plans
- 2. Apply advanced manual mobilization skills to joint and soft tissues to improve foot and ankle mobility and function
- 3. Design a progressive strengthening program to improve motor control of the foot and ankle
- 4. Design a comprehensive orthotic plan to improve function and gait for patients with identified foot/ankle dysfunction
- 5. Take a mold for a shoe-insert orthotic to support a structural and functional foot impairment.

Faculty:

This course was developed and is instructed by **Amanda Hall, PT, MPT, PCS**, who received her MPT from the University of Washington in 2001. She re-certified as a Pediatric Clinical Specialist in 2020. She has developed a framework based on movement system analysis for differential diagnosis, developmental movement system analysis, neuroplasticity, manual therapy, and alignment for therapeutic gait. Her framework has a strong focus in patient-centered treatment and adaptive design. Amanda's clinical practice is at the HSC Pediatric Center in Washington, DC, where she provides therapeutic casting, orthotic evaluations, and foot and ankle intervention, as well as clinical consultation and private practice for adult casting, orthotics, and foot/ankle management. Amanda has presented her work internationally, including at APTA's Combined Sections Meetings (CSM), American Academy of Pediatric PT's Annual Conference (APPTAC), and at the National Institutes of Health (NIH).

Copyright Notice

All manual materials, including, without limitation, the logos, design, text, graphics, other files and the selection and arrangement are Copyright ©2024-2025 Amanda Hall, PT or copyrighted as otherwise noted. The text and graphic content of the Amanda Hall, PT and may be electronically copied and printed as hard copy only under the following condition: 1. the content is used for informational and non-commercial use only; Copyright information is displayed (e.g. © Copyright 2023-2024 Amanda Hall, PT); and/or 2. the content is not modified. Any other use of the materials in this manual, including any commercial use, reproduction for purposes other than as described above, distribution, republication, or display performed without prior written permission of Amanda Hall, PT is strictly prohibited.

Course Logistics

Lab Clothing: Please have the legs available from the knee through the foot for lab portions. Cover-ups are recommended between lab portions, as room temperatures may vary.
 Fingernails: Short fingernails are recommended for manual therapy techniques.
 Individual This course is a hands-on learning environment in which participants will be performing challenging
 Responsibility: techniques and will be evaluated by and treated by other course participants. It is not possible for the instructor to monitor all participants at all times. It is the responsibility of each participant to monitor and limit their participation as need, both in delivering and receiving techniques.

Course Description

This in-person course focuses on hands-on advanced evaluation and treatment of the foot and ankle to improve gait and function for patients with pediatric, neurologic, and orthopedic health conditions. Participants will practice an organized system to evaluate ankle function using a kinesiopathologic approach, determining key findings to develop a clinical hypothesis. Multiple labs will include the latest evidence-based interventions to improve foot and ankle function for individuals across the movement spectrum, including joint and soft tissue mobilizations, improving strength and motor control of the "foot core", and addressing pain. Participants will also learn hands-on skills for orthotic design as well as foot/ankle taping techniques.

Course Objectives:

At the conclusion of the course, participants should be able to:

- 1. Analyze foot and ankle exam findings including gait kinematics, neuromotor function, and musculoskeletal findings to design individualized treatment plans
- 2. Apply advanced manual mobilization skills to joint and soft tissues to improve foot and ankle mobility and function
- 3. Design a progressive strengthening program to improve motor control of the foot and ankle
- 4. Design a comprehensive orthotic plan to improve function and gait for patients with identified foot/ankle dysfunction
- 5. Take a mold for a shoe-insert orthotic to support a structural and functional foot impairment.

Faculty:

This course was developed and is instructed by **Amanda Hall, PT, MPT, PCS**, who received her MPT from the University of Washington in 2001. She re-certified as a Pediatric Clinical Specialist in 2020. She has developed a framework based on movement system analysis for differential diagnosis, developmental movement system analysis, neuroplasticity, manual therapy, and alignment for therapeutic gait. Her framework has a strong focus in patient-centered treatment and adaptive design. Amanda's clinical practice is at the HSC Pediatric Center in Washington, DC, where she provides therapeutic casting, orthotic evaluations, and foot and ankle intervention, as well as clinical consultation and private practice for adult casting, orthotics, and foot/ankle management. Amanda has presented her work internationally, including at APTA's Combined Sections Meetings (CSM), American Academy of Pediatric PT's Annual Conference (APPTAC), and at the National Institutes of Health (NIH).

Copyright Notice

All manual materials, including, without limitation, the logos, design, text, graphics, other files and the selection and arrangement are Copyright ©2024-2025 Amanda Hall, PT or copyrighted as otherwise noted. The text and graphic content of the Amanda Hall, PT and may be electronically copied and printed as hard copy only under the following condition: 1. the content is used for informational and non-commercial use only; Copyright information is displayed (e.g. © Copyright 2023-2024 Amanda Hall, PT); and/or 2. the content is not modified. Any other use of the materials in this manual, including any commercial use, reproduction for purposes other than as described above, distribution, republication, or display performed without prior written permission of Amanda Hall, PT is strictly prohibited.

- Foot and Ankle Terminology
 - Worksheet
- Foot and Ankle Function
 - Efficient ankle function: structure and function
 - Ankle dysfunction: impact of structural and functional variants using the kinesiopathologic model in pediatric, neurologic, and orthopedic patients
- MS evaluation Lab: Musculoskeletal Foot and Ankle Examination
 - Weightbearing functional assessment
 - Special tests: Dorsiflexion Stress test and Talocrural Axis Test
 - Lab: Musculoskeletal Examination: Establishing the structural anatomy and current functional status of the foot and ankle
 - NWB, WB corrective force tests
- Neuromotor Exam
 - Tests for foot intrinsic function
 - Balance tests
 - Test to determine contributors to atypical patterns of tonic contraction
- Ankle mobilizations
 - Joint Mobilizations: Subtalar and talocrural
 - Mobilizations: midfoot, forefoot, 1st ray, digits
 - Soft tissue mobilizations to improve ankle mobility and relative flexibility
- Gait: elements of efficient and therapeutic gait
 - Taping techniques for the foot and ankle: stability, alignment, and facilitation
 - Supination
 - Pronation
 - Shortening the medial arch
 - Spiral foot core
 - Longitudinal foot core
 - Correction of abducted first ray
 - Correction of forefoot supination in chronically pronated foot
 - Taping for stability and proprioception
 - Progressive resisted exercises for the foot intrinsics
 - Improving motor control for the key elements of therapeutic gait: loading response, midstance, and terminal stance
- The role of neuroplasticity in foot and ankle function in orthopedic and neurologic dysfunction
 - Lab: Sensory/Perceptual and Pain Exam
 - Hypo/hyper altered sensation
 - Pain: perception and communication
 - Applied neuroplasticity interventions for foot and ankle function

- Short foot
- Paper grip test for foot intrinsics
- Intrinsic positive test
- Toe splaying
- Comprehensive exam and application of treatment techniques
 - Advanced mobilizations
 - Addressing talar rotation during hindfoot mobilizations
 - Mobilizations with tonic contractions/tone in neurologic and pediatric patients
 - Muscle energy techniques
 - Supination and pronation joint and soft tissue progressions

Orthotics

- Evidence related to ankle dysfunction through the kinetic chain
- Framework for orthotic prescription, design, and dosing
- Coronal, sagittal, and transverse plane design
- Posting worksheets
- Taking molds for orthoses
- Lab: case studies and applied orthotic trials
- Shoe selection and design

Movement System Analysis--Foot and Ankle

Fun	ctional Status and Task Analysis	□ Soft tissue status					
	Does not stand	Superficial Middle Deep					
	Stands but does not ambulate	Thigh/knee					
	With device (stander or gait trainer)	Medial calf					
	Stands for transfers or other function						
	Pre-ambulatory	Lateral calf					
	Ambulatory (with or without device)	Heel cord					
		Post Hindfoot					
		Ant Hindfoot					
	Loading response	Midfoot					
	Midstance: self-selected shank angle	Forefoot/digits					
	 Shank angle WFL Excessively inclined shank 	NWB Corrective force test					
	Excessively inclined shank	WB Corrective force test Neuromotor and Motor Control Findings					
	Excessively reclined shank						
	Terminal Stance	Neuromotor MSD					
	Swing phase	Muscle activation and timing					
	Foot clearance	Impaired recruiting					
	Limb positioning at TS (location of Initial contact)	Excessive recruiting					
		Insufficient Force					
	Transverse and Frontal Plane findings	 Insufficient Endurance 					
		 Insufficient Range					
	Lifespan status	Impaired Relaxation					
Mu	sculoskeletal Findings	Tonic contraction					
	Altered joint physiology due to health condition	Atypical habitual patterns of movement					
	Altered muscle strength or endurance due to health condition						
	Structural variants	 Emerging Motor Control Balance Strategies 					
	Atypical structure						
	TC Axis test: TC joint alignment	Sensory Perception and Pain					
	□ Structural findings:	Sensory perception of the foot/ankle					
	Coronal Plane Transverse Plane	Hyperperceptive					
	Hip/femur	Hypoperceptive					
	Knee/tibia	Altered sensory/perception elsewhere in the greater movement					
	Hindfoot	system					
	Midfoot	Pain In foot/ankle/lower leg					
	Forefoot	Elsewhere in kinetic chain					
	Functional Variants	Relevant Cardiopulmonary, Integumentary, Endocrine,					
	DF Stress test, Neutral hindfoot	Neurodevelopmental, Gastrointestinal, Lymphatic System Findings					
	End feel Pronated hindfoot	GERD					
	Supinated hindfoot	ASD					
	Joint function	Integumentary					
	Alignment, Joint play, End feel,						
		Individual Characteristics					
	Arthrokinematics, ROM Distal tib/fib	Sustained alignments based on regular activities					
	Talo-crural	Participation interests					
	Subtalar						
	Midtarsals	Structural demands of the regular and goal environments					
	Forefoot						
	Digits	Patient and family goals					
	Altered relative stiffness/flexibility						
		Engagement with therapy and orthoses					
	Altered line of pull of muscles around joints						
	Findings	Suspected Drivers:					
Tas	<pre>< Analysis:</pre>						
		Limiting Easters					
		- Limiting Factors:					
NM	:						
Sen	sory and Pain:	Goals of Intervention:					
	er Systems:	-					
Indi	vidual:	_ System Resources:					
1							

Movement System Analysis--Foot and Ankle

Functional Status and Task Analysis					tissue status				
		s not stand				Superficial	Middle	Deep	
		ids but does not ambulate			Thigh/knee	Capernolai	linadic	2000	
		With device (stander or gait trainer)			Medial calf				
					Lateral calf				
		Pre-ambulatory							
		pulatory (with or without device)			Heel cord				
					Post Hindfoot				
		Stance phase Loading response			Ant Hindfoot				
		 D Midstance: self-selected shank angle 			Midfoot				
		-			Forefoot/digits				
		1-Shank angle WFL	NWB Corrective force test						
		2-Excessively inclined shank	WB Corrective force test						
		3-Excessively reclined shank	Neuromotor and Motor Control Findings						
		 Terminal Stance Swing phase 	Neuromotor MSD						
		51		 Muscle activation and timing Impaired recruiting 					
		Foot clearance							
		Limb positioning at TS (location of Initial contact)			Excessive recruiti	ng			
					Insufficient Force				
		Transverse and Frontal Plane findings			Insufficient Endur	rance			
					Insufficient Range				
		elopmental status	_		Impaired Relaxati				
l		skeletal Findings			Tonic contra	ction			
		red joint physiology due to health condition		Atvi	pical habitual patte				
	Alte	red muscle strength or endurance due to health condition			onsistent Motor Pa				
_					Emerging Motor (
		ctural variants			ince Strategies				
		Atypical structure			Perception and Pai	<u> </u>			
		,			sory perception of				
		Structural findings:			Hyperperceptive				
		Coronal Plane Transverse Plane			Hypoperceptive				
		Hip/femur			red sensory/perce	ntion elsewher	e in the move	ment system	
		Knee/tibia		7 1100	red sensory/perce	ption cise where		ment system	
		Hindfoot		Pair	n 🗖 🛛 In foot/ankle	/lower leg			
		Midfoot		i un		n kinetic chain			
		Forefoot	Relevant Cardiopulmonary, Integumentary, Endocrine, Neurodevelopmental, Gastrointestinal, Lymphatic System Findings						
	Fund	ctional Variants							
		DF Stress test, 1 -Neutral hindfoot							
		End feel 2-Pronated hindfoot	ASD						
		3-Supinated hindfoot							
		Joint function	Integrationaly						
		Alignment, Joint play, End feel,	Individual Characteristics						
		Arthrokinematics, ROM			ained alignments l	based on regula	ar activities		
		Distal tib/fib							
		Talo-crural	Participation interests						
		Subtalar							
		Midtarsals		Stru	ctural demands of	the regular and	d goal environ	ments	
		Forefoot				0	5		
		Digits		Pati	ent and family goa	ls			
		Altered relative stiffness/flexibility			, ,				
		· · · · · ·		Eng	agement with ther	apy and orthos	es		
		Altered line of pull of muscles around joints							
Key Findings				pecte	d Drivers:				
		lysis:							
MS:					Factors:				
NM:									
Sensory and Pain:					Intonyontion				
			GOa		Intervention:				
Other Systems:									
Individual:					lesources:				

Mu:	Isculoskeletal Findings Altered joint physiology due to health condition						
	Altered muscle strength or endurance due to health condition						
			0				
							-
	Stru	ictural variants					_
	_						
		Atypical struc	ture				-
		TC Avis tost. T		int alignment			
		TC AXIS LESL. I	C JU	int alignment			-
		Structural find	ding	5:			
			0	ronal Plane	Transv	verse Plane	
		Hip/femur					
		Knee/tibia					
		Hindfoot					
		Midfoot					
		Forefoot					
	Fun	ctional Variant	S				
	_		_	امتنا المنبعين	6+		
		End feel	, U	1-Neutral hind 2-Pronated hin	IOOL		-
		LIIUTEEI		3-Supinated hi			-
				o ouplification			-
		Joint function					
	Alignment, Joint play, End feel,						
	Arthrokinematics, ROM						
	Distal tib/fib						
	Talo-crural						
	Subtalar						
	Midtarsals						
	Forefoot						
	Digits						
		Altered relativ	/e ct	iffness/flexibilit	V		
	-	Altered relation	10 31	IIIIess/IIexibilit	У		_
							-
		Altered line of	f pul	l of muscles arc	ound joints		_
	Soft	tissue status		I	1	1	
				Superficial	Middle	Deep	_
		Thigh/knee					
		Medial calf					
		Lateral calf					
		Heel cord					_
		Post Hindfoo Ant Hindfoo					
		-	ι				
	Midfoot Forefoot/digits						
			5113	1	1		
	NWB Corrective force test						
	WB Corrective force test						

Movement System Analysis Framework: Foot and Ankle

Ne	uromotor and Motor Control Findings	
	Neuromotor MSD	
	Muscle activation and timing	 Musculoskeletal/Neuromotor: Identifying stiff, short, and tonic contraction vs. "tight"
	Impaired recruiting	• What structures are pulling the ankle complex off axis?
	Excessive recruiting	Is the pull passive or active?What input decreases or increases this pull?
	Insufficient Force	 What input turns off the patient's involuntary and voluntary contractions?
	Insufficient Endurance	 Techniques to address patient stress, guarding, and tonic muscle contraction unweighting
	Insufficient Range	 deep pressure contact on the active structures movement into tone-inhibiting positions
	Impaired Relaxation	 NOT yelling at them to relax
	Tonic contraction	
	Atypical habitual patterns of movement	
	Inconsistent Motor Patterns	
	Emerging Motor Control	
	Balance Strategies	

Individual Goal Development: Using ICF and DMSM

Key Findings Task Analysis: MS: MS: NM: Sensory and Pain: Sensory and Pain: Other Systems: Individual: Goals: Body Structure and Function: Short Term • Lessen the impact of cumulative micro-trauma due to sustained alignments or repeated movements • Externally support hypermobile structures in the movement system which have become the path of least resistance for ground reaction forces • Direct forces toward target structures to increase their relative flexibility • Restrict or resist motions in planes not compatible for healthy biomechanics • Influence neuromuscular activation patterns during gait and other weightbearing activities	Suspected Drivers: Limiting Factors: Goals of Intervention: Goals: Body Structure and Function: Developmental Movement System Model. For the patient as an adult : • Minimize negative sequelae of developing in the context of a pediatric health condition • Minimize pain • Maximize structural resilience of the movement system • Maximize neuromotor function and access to varied movement options
 Goals: Environment: Short Term Increase direct access to goal environments and structures Goals: Activities: Short Term Improve Function Efficiency Safety Goals: Environment and Activities: Developmental Movement System Model. For the patient as an adult: Maximize the environments and activities the patient can access with their movement system in the future 	 Goals: Participation & Personal Factors: Short Term Social Acceptance Self-Acceptance Fit In Stand Out Appear Neurotypical Celebrate differences Be Cool Goals: Participation & Personal Factors: Developmental Movement System Model. For the patient as an adult: Maximize acceptance of individual differences Maximize the ability to self-advocate and access appropriate resources Maximize work and social engagement as an adult
Team member goals: PT's goals: Patient's goals: Family's goals: Other team member's goals:	

Terminology Worksheet

Plane	Bone Structure (Adjectives)	Movements & Postures (Verbs) (-ed, -ion, -ing)
Transverse	Medial Torsion – Lateral Torsion Adduct <mark>us</mark> – Abduct <mark>us</mark>	Adduct (- <mark>ed, -ion, -ing</mark>) – Abduct (- <mark>ed, -ion, -ing</mark>)
Coronal	Varus (-a, -um) – Valgus (-a, -um)	Invert – Evert Adduct – Abduct
Sagittal	Sagittal Plane bowing	Flex – Extend Dorsiflex – Plantarflex
Triplanar		Supinate(d) (add + inv + PF) – Pronate(d) (abd + eve + DF)

Fill in the blanks with the following words:

Eversion
Hindfoot varus
Medial tibial torsion
Supination

Pronation Forefoot varus Tibial vara Forefoot adductus Genu (knee) valgum Inversion MTP abduction Lateral tibial torsion

1. Structure: Twist of tibia in the transverse plane away from midline—distal aspect more laterally oriented than proximal aspect.

2. Structure: Twist of the tibia in the transverse plane toward midline—distal aspect more medially oriented than proximal aspect.

3. Structure: Net orientation of the femur/tibia in the coronal plane away from midline (distal part is more lateral)

Right LE, view from posterior in standing

Right LE, view from posterior in standing

4. Structure: Curve of the tibia in the coronal plane toward the midline (distal medial)

part is more

- Ambulation, Activity, and AFOs
- © Amanda Hall, PT, MPT, PCS

posterior in prone

Left LE, view from

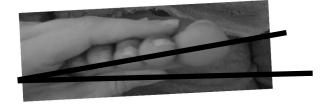
5. Structure: With the talocrual and subtalar joints congruent, the calcaneous is oriented medially in the coronal plane.

6. Motion/position: Medial orientation of the hindfoot toward midline in the coronal plane

Left LE, view from posterior in prone

- 7. Motion/position: Lateral orientation of the hindfoot away from midline in the coronal plane

Left LE, view from posterior in prone



8. Structure: Medial orientation of the metatarsals in the transverse plane

9. Structure: With joints congruent, the MTPs are angled such that the 5th MTP is lower than the 1st MTP (medial rotation in the coronal plane)

10. Motion/position: lateral orientation of MTP in the transverse plane

11. Triplanar motion or position of joint in eversion, dorsiflexion, abduction

12. Triplanar motion or position of joint in inversion, plantarflexion, adduction

_

Key Findings Task Analysis:	Suspected Drivers:		
MS: NM:	Limiting Factors:		
Sensory and Pain:			
Other Systems:	Goals of Intervention:		
Individual:			
 Goals: Body Structure and Function: Short Term Lessen the impact of cumulative micro-trauma due to sustained alignments or repeated movements Externally support hypermobile structures in the movement system which have become the path of least resistance for ground reaction forces Direct forces toward target structures to increase their relative flexibility Restrict or resist motions in planes not compatible for healthy biomechanics Influence neuromuscular activation patterns during gait and other weightbearing activities 	 Goals: Body Structure and Function: Developmental Movement System Model. For the patient as an adult: Minimize negative sequelae of developing in the context of a pediatric health condition Minimize pain Maximize structural resilience of the movement system Maximize neuromotor function and access to varied movement options 		
 Goals: Environment: Short Term Increase direct access to goal environments and structures Goals: Activities: Short Term Improve Function Efficiency Safety Goals: Environment and Activities: Developmental Movement System Model. For the patient as an adult: Maximize the environments and activities the patient can access with their movement system in the future 	 Goals: Participation & Personal Factors: Short Term Social Acceptance Self-Acceptance Fit In Stand Out Appear Neurotypical Celebrate differences Be Cool Goals: Participation & Personal Factors: Developmental Movement System Model. For the patient as an adult: Maximize acceptance of individual differences Maximize the ability to self-advocate and access appropriate resources Maximize work and social engagement as an adult 		
Team member goals: PT's goals: Patient's goals:			
Family's goals:			
Other team member's goals:			

DF Stress Test

Dorsiflexion Stress Test

Where does DF occur when a general force is applied?

Where does ankle "dorsiflexion" (foot toward tibia) "want" to occur with PROM (direction susceptible to motion)? Does the ankle move primarily with TC dorsiflexion, or does compensatory motion occur?

What and where is the end feel of gross DF if you do not guide the motion?

Classify in one of these 3 groups:

- 1. Neutral Hindfoot
- 2. Pronated Hindfoot
- 3. Supinated Hindfoot

TC Axis Test

Talo-Crural Axis Test

- Move the ankle through dorsiflexion and plantarflexion at different points along the transverse plane.
- Assess what is limiting further dorsiflexion from occurring
 - Quality of end feel
 - Location of end feel
- Move your position to be in line with the axis of motion of the TC joint
- Identify point where the end feel is in the Achilles tendon or TC joint

Musculoskeletal Examination: Soft tissue extensibility

Does each layer of fascia glide over the underlying tissue? Where are the restrictions?

Muscle bellies Heel cord and tendons Superficial fascia Skin

- local
- winding and twisting

Check for: Tissues that are over-stretched or damaged

Tissues that feel blocked or have a tough end feel

Hyper- or hypo-mobility of plantar fascia and medial foot structures

Excursion and end feel of soft tissues

Movement of the soft tissues of the GS, over and of the heel cord, around the ankle

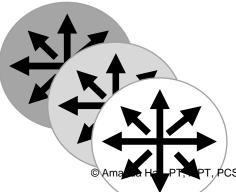
Where are the restrictions?

What is the end feel?

Extensibility/Stiffness

Ability to lengthen, ability to fold

Multi-layer assessment


Multi-directional assessment

Manual Therapy Activity

not a linear treatment approach

Constantly seeking and clearing the next limiting structure

"Tone," posturing, and muscle length

What input decreases the patient's involuntary and voluntary muscle contractions?

Strategies:

-unweighting

-deep pressure

-contact on the active structures-movement into tone-inhibiting positions

-NOT yelling at them to relax

TC DF Axis Test – Line up to be in line with TC DF throughout treatment.

Dorsiflexion should always be "for free"

Gravity and physics provide stretch

DF Force through therapist's knee into patient's 5th MTP

Therapist in line with patient's TC joint, typically across the patient's midline.

Soft tissue extensibility

Glide each layer of fascia glide over the underlying tissue. Find are the restrictions and mobilize them.

Move the system into further correction, and look for restrictions as you move further into the range.

Mobilize tissues that feel blocked or have a tough end feel.

Trace around boney prominences.

Address the mobility as needed of:

Muscle bellies Heel cord and tendons Superficial fascia Skin -local -winding and twisting

- Multi-layer
- Multi-directional
- Overall-twisting and gliding
- Identify and address restricted spots
 - o Hindfoot
 - \circ Proximal
 - o Distal

Joint Motion Alignment of the talus

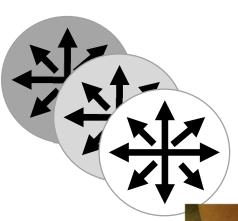
Techniques to improve joint alignment and mobility Distal tib-fib mobilization

Calcaneal Distraction Transverse and coronal talus mobilization Posterior talus mobilization

• Direct

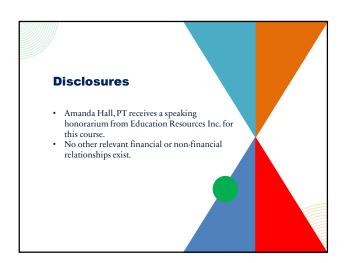
• Through anterior navicular and cuboid Navicular rotation superior and inferior Midfoot mobilizations Forefoot mobilizations

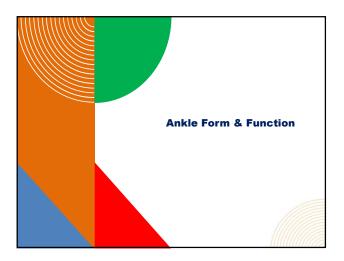
• Forefoot varus versus stiffness


"Pronated" foot: Correct the alignment of the navicular and midfoot to create an arch

Supinated foot: mobilize the cuneiforms and navicular medially

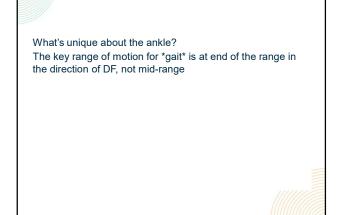
As you work, bring the foot into more dorsiflexion and see where the restrictions. Pay attention to where the foot "wants" you to go, and where it "should" go. You are looking for a healthy end feel as you continue to work into restrictions and move further into the range. Don't let the foot trick you.

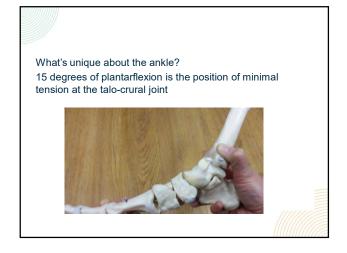




The Ankle

- For those of us who stand or ambulate, the foot and ankle are the **interface of our bodies with the world** for function.
- Altered function of this Body Structure can contribute significantly to Activity limitations and Participation restrictions.


What's unique about the ankle?


The ankle is uniquely biased to lose functional ROM

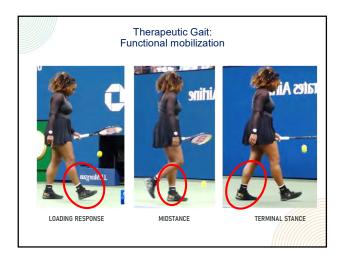
- Intrinsic resistance in posterior structures due to passive-elastic properties of the gastrocsoleus soleus complex
- Allows the system to store energy at terminal stance to power swing to maximize efficiency of gait/minimize energy expenditure.

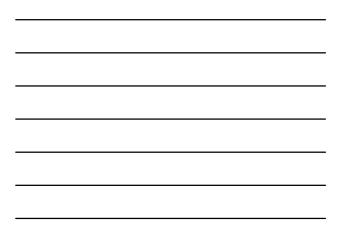
з

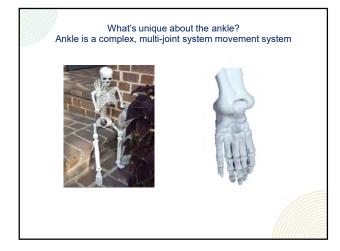
What's unique about the ankle? Therapeutic Gait

Functional dorsiflexion and healthy gastrocsoleus function are achieved

not just *for*


but *through*


regular ambulation


"Therapeutic Gait" (Elaine Owen MBE MSc SRP MCSP)

Therapeutic Gait

- Functional DF range and tissue mobility are achieved through regular ambulation with certain key gait dynamics
- Anyone lacking this movement experience is at risk for restricted DF
- Shift: foot and ankle impairments in cerebral palsy may be sequelae of the *lack of therapeutic gait*, NOT a primary sign of the cerebral palsy
- Establishing key gait dynamics isn't just the goal of treatment, it is the long-term treatment itself.

Joints - Hindfoot

- Talo-crural (talustibia/fibula)
- Subtalar (taluscalcaneous)

Subtalar neutral "Clinical fiction"

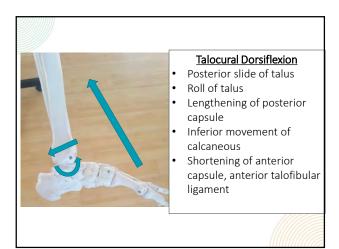
→ Talus on axis Talocrural dorsiflexion *TC DF*

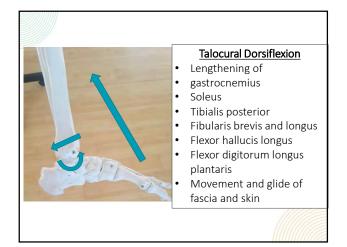
Epigenetics & modern phenotypes: **the biological nonsense of subtalar neutral**. Journal of foot and ankle research.(Quinn 2010)

Challenging the foundations of the clinical model of foot function: further evidence that the **Root Model assessments fail to appropriately classify foot function.** (Jarvis 2017)

If it doesn't work, why do we still do it? **The continuing use of Subtalar Joint Neutral Theory in the face of overpowering critical research**. (Harradine 2018)

Ankle is a complex, multi-joint system movement system


Hindfoot


- Talo-crural (talustibia/fibula)
 Subtalar (talus-
- calcaneous)

Midfoot

- Talus-Navicular
- Calcaneous-cuboid
- Navicular-cuneiforms
 Cunieforms/cuboidmetatarsals

Movement System: Kinesiopathologic Model Shirley Sahrmann, PT, PhD, FAPTA

- Movement System
- Kinesiopathology

Sahrmann S, Azevedo DC, Dillen LV. **Diagnosis and** treatment of movement system impairment syndromes. Braz J Phys Ther. 2017 Nov - Dec;21(6):391-399.

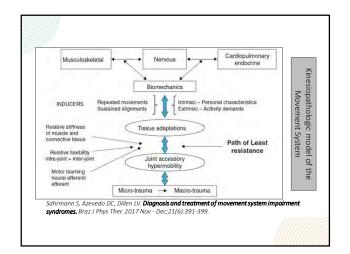
Movement System: Kinesiopathologic Model

- The body, at the joint level, follows the laws of physics and takes the path of least resistance for movement
- Determinants of the path of motion are
- intra- and inter-joint relative flexibility
- relative stiffness of muscle and connective tissue
- motor control

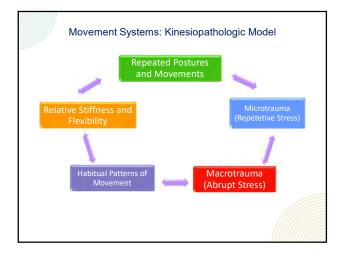
Sahrmann S, Azevedo DC, Dillen IV. Diagnosis and treatment of movement system impair syndromes. Braz J Phys Ther. 2017 Nov - Dec;21(6):391-399.

Movement System: Kinesiopathologic Model

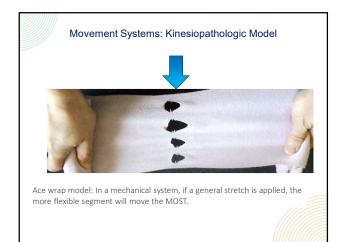
 Repetitive movement and sustained alignments can induce pathoanatomical changes in tissues and joint structures

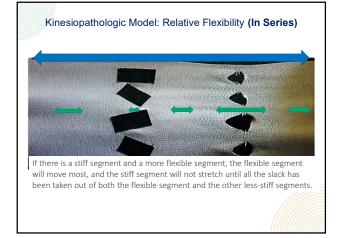

Sahrmann S, Azevedo DC, Dillen LV. Diagnosis and treatment of movement system impairment syndromes. Braz J Phys Ther. 2017 Nov - Dec;21(6):391-399.

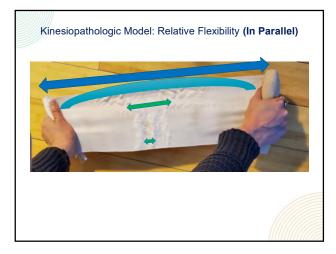
Movement System: Kinesiopathologic Model


- Sustained alignments and repeated movements associated with daily activities induce tissue adaptations as well as impaired alignment and movement.
- Micro-instability
 - → tissue micro-trauma

→ macro-trauma

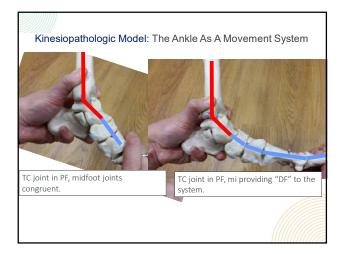

Sahrmann S, Azevedo DC, Dillen LV. Diagnosis and treatment of movement system impair syndromes. Braz J Phys Ther. 2017 Nov - Dec;21(6):391-399.





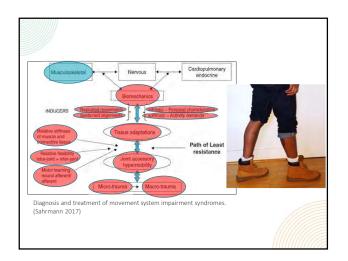
Kinesiopathologic Model: The Ankle As A Movement System

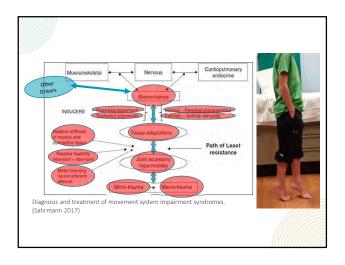
Hindfoot

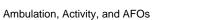

• Talo-crural (talustibia/fibula)

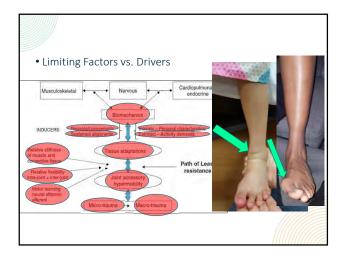
Midfoot

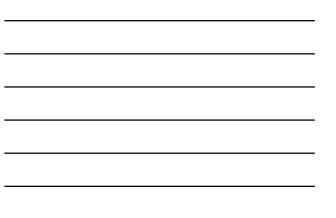
- Talus-navicular
- Calcaneous-cuboid • Navicular-
- cuneiforms
- Cunieforms/cuboidmetatarsals











What's unique about the ankle? Heterogeneity

Kinematic foot types in youth with equinovarus secondary to hemiplegia. (Krzak 2015)

- Participants *with hemiplegia and "equinovarus"* presented with 5 distinct subgroups
- Neurotypical controls were distributed among 4 subgroups
- Noted: inherent variability in foot structure even in neurotypical, asymptomatic movement systems

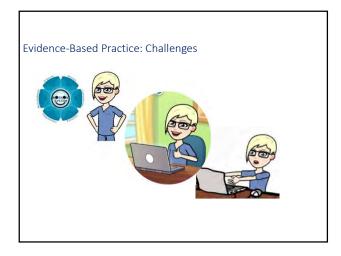
Outline

- Terminology
- Model of Ankle Function
- Do We Need to Intervene? Interventions A. Theories of
 - Intervention B. Relevant Evidence
 - C. Impact on Developing Systems
 - Developmental Movement System Model
- Goals

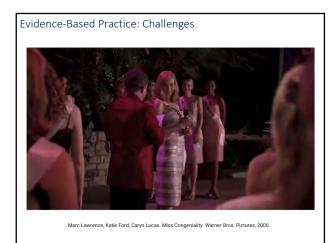
- Ankle Exam • Gait Analysis
- - Range motion Strength and motor
 - control
 - Neuroplasticity
 - External supports

Evidence-Based Practice: Challenges

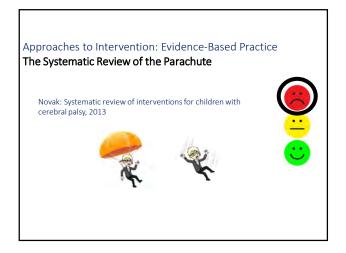
The Roast, the Parachute, and the One-Legged Stool



Challenges to EBP


The Parable of the Roast

- Rigidity
- Institutional practices
- Regional practices
- Health-condition based decision making
- Lack of flexibility
- Lack of clinical problem solvi



Evidence-Based Practice Challenges

1. Defining "effective"

Evidence-Based Practice: Challenges Outcomes: Cerebral Palsy

- Chronic conditions: higher rates of asthma, heart disease, stroke, emphysema, and arthritis
- Pain: remarkably higher prevalence of pain 70% vs 20% in the general population
- Accelerated functional losses
- Lower levels of participation
- Higher risk of depression and anxiety

Evidence-Based Practice

Challenges

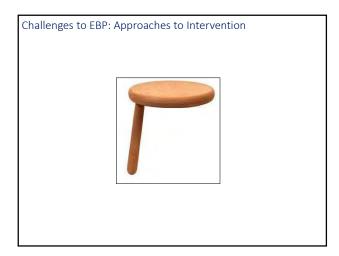
- Defining "effective"
 Cohorts (heterogeneity)
 - X intervention was effective for 60% of patients with Y health condition.
 - What is the difference between the responders and nonresponders?
 - How do I know if my patient is similar to the 60% or the 40%?
 RCTs guide treatment for the "average" patient, but give little guidance for the individual patient

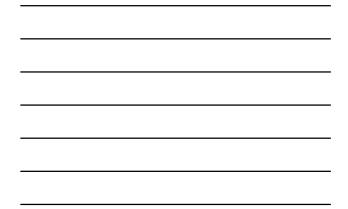
Challenges to EBP: Approaches to Intervention

Kaplan et al. Evaluating treatments in health care: The instability of a **one-legged stool**. *BMC Medical Research Methodology*. 2011;11(1):65.

Evaluating treatments in health care: The instability of a **one-legged stool**. Kaplan et al 2011.

Over-reliance on RCTs:


- has been influenced in part by market pressures relevant to pharmaceutical companies
- was stimulated significantly by the 1962 amendments to the American Food, Drug, and Cosmetic Act
- is not scientifically sound
- has fostered a less critical form of thinking in the evaluation of health care treatments.


Evaluating treatments in health care: The instability of a **one-legged stool**. Kaplan et al 2011.

- What clinicians really want to know is whether or not the person sitting before them is likely to benefit.
- The averaged results derived from RCTs offer insufficient or even incorrect guidance on how to approach *a specific case*.
- Additional forms of evidence that *explicitly include individual* and context characteristics are needed to assist clinicians in choosing a course of action regarding specific patients.

Evaluating treatments in health care: The instability of a **one-legged stool**. Kaplan et al 2011.

- Observational studies often include patients with coexisting illnesses and a wide spectrum of disease severity, which gives much more clinical information in determining treatment for the *individual patient* versus the *average patient*.
- The premise that RCTs are the only form of evidence capable of providing an unbiased estimate of treatment effects is false.
- We must use critical thinking when designing and consuming studies, and know that RCTs are just one tool.

Outline

- Terminology
- Model of Ankle Function
- Do We Need to Intervene?
 - A. Theories of Intervention
 - B. Relevant Evidence
 - 1. Limited DF
 - 2. Excessive Pronation
 - 3. Weakness
 - 4. Neuroplastic Changes
 - C. Impact on Developing Systems

Impacts of Limited DF: Athletes, Neurotypical adults with chronic ankle stability, Neurotypical controls:

- The association of dorsiflexion flexibility on knee kinematics and kinetics during a drop vertical jump in healthy female athletes. (Malloy 2015)
- Predictors of frontal plane knee excursion during a drop land in young female soccer players. (Sigward 2008)
- Ankle dorsiflexion range of motion influences dynamic balance in individuals with chronic ankle instability. (Basnett 2013)
- The effect of reduced ankle dorsiflexion on lower extremity mechanics during landing: A systematic review. (Mason-Mackay 2017)
- Ankle DF range of motion and landing biomechanics. (Fong 2011)
- Effects of ankle dorsiflexion limitation on lower limb kinematic patterns during a forward step-down test: A reliability and comparative study. (Lebleu 2018)
- Effect of limiting ankle-dorsiflexion range of motion on lower extremity kinematics and
 muscle-activation patterns during a squat. (Macrum 2012)

Impact of Limited DF Range

Asymptomatic controls & athletes:

- Increased vertical ground reaction force
- Decreased shock absorption

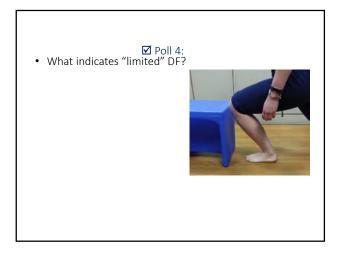
Impact of Limited DF Range

Asymptomatic controls & athletes:

- Increased coronal and transverse plane displacement
 - Greater peak knee abduction angles
 - Greater peak knee abduction moments
 - Increased medial rotation of hip
 - Increased adduction of hip

Impact of Limited DF Range

Asymptomatic controls & athletes:


- Increased coronal and transverse plane displacement
 - Greater peak knee abduction angles
 - Greater peak knee abduction moments
 - Increased medial rotation of hip
 - Increased adduction of hip

Impact of Limited DF Range

Neurotypical adults with chronic ankle stability:

• Decreased performance on *balance* testing

Outline

- Terminology
- Model of Ankle Function
- Do We Need to Intervene?
- A. Theories of Intervention
- B. Relevant Evidence
 - 1. Limited DF
 - 2. Excessive Pronation
 - 3. Weakness
 - 4. Neuroplastic Changes
- C. Impact on Developing Systems

Impact of Excessive Pronation in Asymptomatic controls, runners

- The relationship between foot posture and lower limb kinematics during walking: A systematic review (Buldt 2014)
- Increased unilateral foot pronation affects lower limbs and pelvic biomechanics during walking. (Resende 2015)
- Risk factors associated with medial tibial stress syndrome in runners: a systematic review and metaanalysis.(Newman 2013)

Impact of Excessive Pronation:

Asymptomatic controls, runners:

- Increased medial tibial rotation
- Increased ipsilateral pelvic drop
- Increased medial stress

Impact of Excessive Pronation:

Elite baseball players

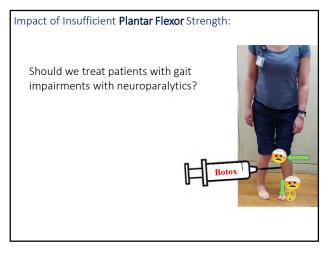
• Increased shoulder involvement (surgery)

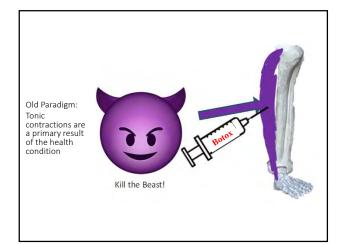
The association of foot arch posture and prior history of shoulder or elbow surgery in elite-level baseball pitchers. (Feigenbaum 2013)

Outline

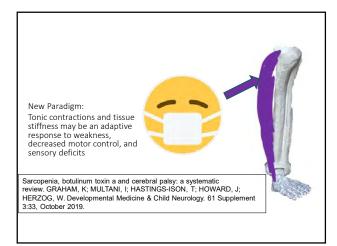
- Terminology
- Model of Ankle Function
- Do We Need to Intervene? A. Theories of Intervention
 - B. Relevant Evidence
 - 1. Limited DF
 - 2. Excessive Pronation
 - 3. Weakness
 - 4. Neuroplastic Changes
 - C. Impact on Developing Systems

Impact of Impaired Strength in Neurotypical Adults:


- Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction. (Thomas 2013)
- Muscle strength and flexibility characteristics of people displaying excessive medial knee displacement. (Bell 2008)
- Eccentric plantar-flexor torque deficits in participants with functional ankle instability. (Fox 2008)
- Fatigue of the plantar intrinsic foot muscles increases navicular drop. (Headlee 2008)


Impact of Insufficient Plantar Flexor Strength:

Neurotypical adults :


- Increased medial knee displacement
- Functional ankle instability
- Increased medial arch loading
- Increased incidence of ankle and knee injury

Impact of Fatigue of Intrinsic Foot Muscles (Foot Core!):

Neurotypical controls :

• Navicular drop

.

Outline

- Terminology
- Model of Ankle Function
- Do We Need to Intervene?
- A. Theories of InterventionB. Relevant Evidence
 - 1. Limited DF
 - 2. Excessive Pronation
 - 3. Weakness
 - 4. Neuroplastic Changes
 - C. Impact on Developing Systems

Cortical-Body Matrix

- develops in a predictable manner, but development and continued function is *based on experience*
- is highly plastic based on experience, even after development is complete

• Frozen shoulder

• Dystonia

• Stroke/CVA

Cortical	mapping	changes	have	been	observed in:	

Surgery

Aging

Pregnancy

- CRPS
- UE pain
- ACL injury
- Back pain
- Arthritis Obesity
- Headaches

Flor 2000, Maihöfner 2003, Moseley 2008, Stenekes 2009, Moseley 2012, Toussaint 2013, Meugnot 2014, Louw 2015, Beales 2016, Falling 2016

• Immobilization • Facial pain

Neuroplastic Changes: Causes

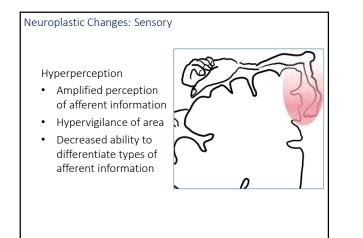
- Paucity of motor experience
- Task failure
- Negative verbal/social feedback
- Altered motor strategies Paucity of sensory
- experience
- Decreased sensory feedback during motor tasks
- Chronic microinjuries
- Abrupt injuries (e.g. falls, sprains)
- Pain
 - Fear/anxiety
 - · Low self-efficacy

Neuroplastic Changes: Self-Efficacy

Athletes, elite athletes, neurotypical adults, older adults

Low self-efficacy

- Worry, kinesiophobia, anxiety, fear of injury
- Impaired:
 - Motor skill performance
 - Postural control
 - Gait parameters
 - Range of motion
- Increased falls


- High self-efficacy: associated with
- higher performance
- Return to previous
- activity

- Nott 2021, Jones 2011, Korpershoek 2011

Neuroplastic Changes: Self-Efficacy

Verbal suggestion can be more powerful than conditioning for performance.

• Corsi, N, Andani, ME, Sometti, D, Tinazzi, M, Fiorio, M. When words hurt: Verbal suggestion prevails over conditioning in inducing the motor nocebo effect. Eur J Neurosci. 2019; 50: 3311-3326.

Neuroplastic Changes: Sensory

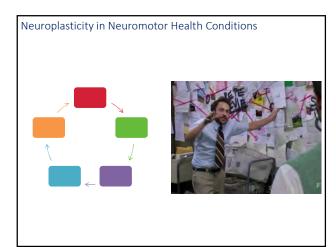
Neglect and Smudging

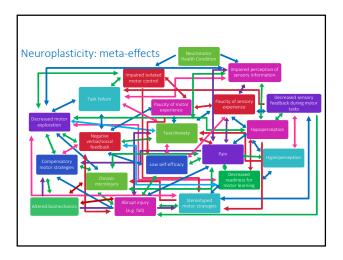
- Dampened perception of afferent information
- Decreased awareness of area
- Decreased ability to differentiate afferent information from area

Neuroplastic Changes: Sensory

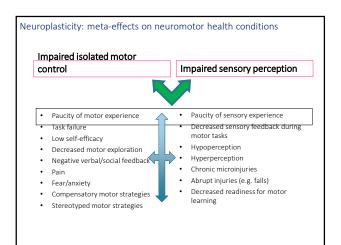
Changes Impact:

- Perception of environmental information
- Perception of body information
- Feedback during motor tasks & proprioception
- Perception of pain

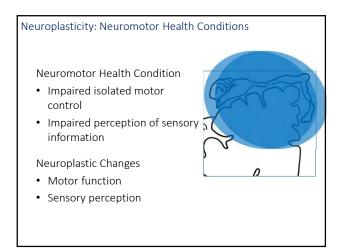

Neuroplastic Changes: Motor

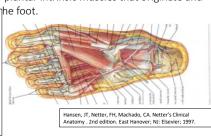

Changes Impact:

- Readiness for motor learning
- Motor control
- Postural control
- Fall frequency
- Motor skill performance


Neuroplasticity: Neuromotor Health Conditions

• When a patient experiences a neuromotor health condition, their motor skills are often impacted not only by the primary health condition, but also by experience-dependent cortical reorganization.




Neuroplasticity: meta-effects on neuromotor health conditions

- Natural history: neuroplastic changes will magnify the effects of neuromotor health conditions
- Impaired motor control and related sequelae that we traditionally attribute to neuromotor health conditions are actually amplified by *experience-dependent* neuroplastic changes.

Neuroplasticity: meta-effects Example: Foot Intrinsics ("foot core")

• 4 layers of plantar intrinsic muscles that originate and

Mckeon, PO, Hertel, J, Bramble, D, Davis, I. The foot core system: a new paradigm for understanding intrinsic foot muscle function. British Journal of Sports Medicine. 2015;49(5):290.

Neuroplasticity: meta-effects Example: Foot Intrinsics ("foot core")

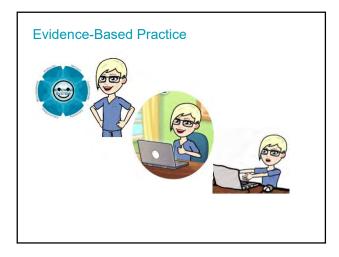
- Intrinsic muscles are advantageously positioned to provide immediate sensory information about changes in the foot posture, via stretch response
- Key for balance and fall prevention
- Loss of alignment of the foot leads to loss of this information

Neuroplasticity: meta-effects

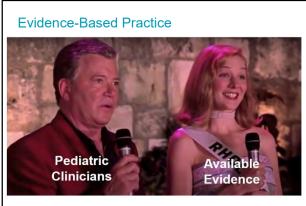
NM health condition \rightarrow \rightarrow Altered LE NM functioning

→Altered foot posture

- → Loss of key afferent information from the foot intrinsics
 - \rightarrow Negative neuroplastic changes
 - \rightarrow Additional balance/gross motor impairment

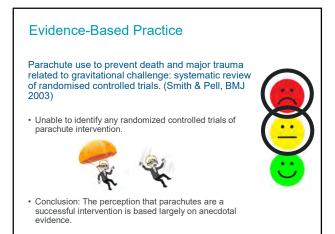

Outline

- Terminology
- Model of Ankle Function
- Do We Need to Intervene? A. Theories of Intervention
- B. Relevant Evidence
 - 1. Limited DF
 - 2. Excessive Pronation
 - 3. Weakness
 - 4. Neuroplastic Changes
- C. Impact on Developing Systems



Manual Page

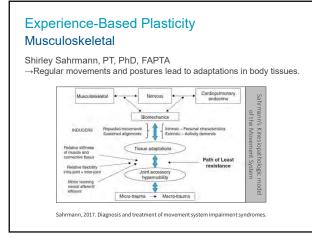
Who's Afraid of Wolff's Law? Inter-systemic Kinesioplasticity During Development --CSM 2023 --Wired On Development Clinical Excellence Summit 2024



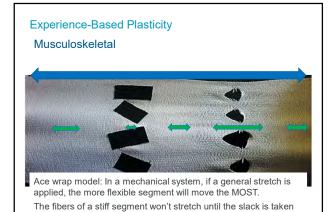
Marc Lawrence, Katie Ford, Caryn Lucas. Miss Congeniality. Warner Bros. Pictures, 2000.

Evidence-Based Practice 1. Defining "Effective"

Outcomes: Cerebral Palsy


- Chronic conditions: higher rates of asthma, heart disease, stroke, emphysema, and arthritis
- Pain: remarkably higher prevalence of pain
 70% vs 20% in the general population
- Accelerated functional losses
- Lower levels of participation
- Emotional well-being: higher risk of depression and anxiety

van der Slot 2021, Peterson 2015, Smith 2018, Jacobson 2019, Frisch 2013


Experienced-based plasticity

• What do we know about how experience shapes the movement system?

up in the more flexible segments

Experienced-Based Plasticity Musculoskeletal

Excessive pronation in neurotypical adults, runners, baseball players:

- Medial shank rotation
- Medial column stress
- Altered pelvic alignment and
- motion Altered trunk alignment

- Lateral trunk lean
 Ankle, knee, low back, and shoulder stress and injuries

Hornestam 2021, Resende 2016, Buldt 2014, Resende 2015, Newman 2013, Feigenbaum 2013

Experienced-Based Plasticity Neuromotor

Negative Neuroplastic Changes: Causes

- · Paucity of motor experience
- · Task failure
- Negative verbal/social feedback Altered motor strategies

· Paucity of sensory

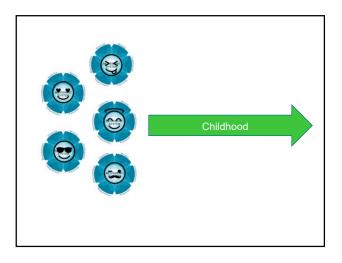
experience

- Decreased sensory feedback during motor tasks Chronic microinjuries
- · Abrupt injuries (e.g. falls, sprains)
- Pain
- Fear/anxiety
- · Low self-efficacy

Experience-Based Plasticity Neuromotor

NM health condition \rightarrow \rightarrow Altered neuromotor function

- →Excessive pronation
 - → Loss of key afferent information from the foot intrinsics
 → Negative neuroplastic
 - changes
 - → Additional balance/gross motor impairment


Experienced-Based Plasticity Neuromotor

Neuroplastic Changes: Self-Efficacy

Verbal suggestion can be more powerful than conditioning for performance.

Corsi, 2019

• When words hurt: Verbal suggestion prevails over conditioning in inducing the motor nocebo effect.

Inter-systemic Kinesioplasticity During Development

- How do kinesiopathologic and neuroplastic influences impact individuals with pediatric health conditions?
- Do children with pediatric health conditions have special protections against the forces that impact adult movement systems?

Inter-systemic Kinesioplasticity During Development

Kinesiopathologic Model

• Repeated movements and sustained alignments influence structure and function

Developmental Kinesiopathelogic Model

• Repeated movements and sustained alignments during development will influence structural and functional outcomes

Inter-systemic Kinesioplasticity During Development

Kinesiopathologic Model

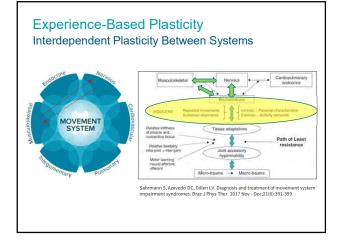
• Repeated movements and sustained alignments influence structure and function

Developmental Kinesioplasicity

• Repeated movements and sustained alignments during development will influence structural and functional outcomes

Neuroplasticity

During Development


Causes of negative neuroplastic change:

Decreased sensory feedback during motor tasks Chronic microinjuries Abrupt injuries (e.g. falls, sprains) Pain			
			Fear/anxiety

Neuroplasticity During Development

 Growing brains are by definition more plastic, and therefore even *more* susceptible to neuroplastic changes based on experiences.

<image>

Inter-systemic Kinesioplasticity

Excessive pronation:

- Medial shank rotation
- Medial column stress
- Altered pelvic alignment and motion
- Altered trunk alignment
- Lateral trunk lean
- Increased ankle, knee, low back, and shoulder stress

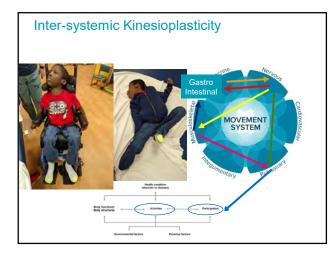
Hornestam 2021, Resende 2016, Buldt 2014, Resende 2015, Newman 2013, Feigenbaum 2013

Inter-systemic Kinesioplasticity

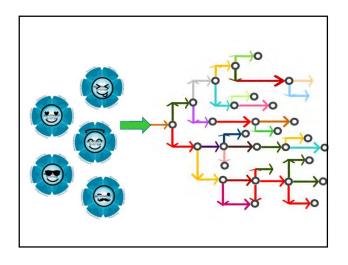
NM health condition \rightarrow \rightarrow Altered neuromotor function

- →Excessive pronation
 - \rightarrow Loss of key afferent information from the foot intrinsics
 - \rightarrow Negative neuroplastic changes
 - → Additional balance/gross motor impairment
- How developing in the context of overstretched foot intrinsics impact the development of the cortical matrix for balance?

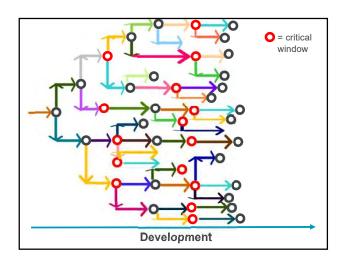
Inter-systemic Kinesioplasticity

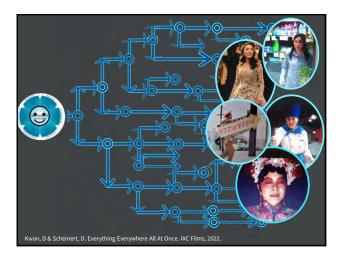

- On EMG studies, individuals vary widely in the contribution of neural (enhanced stretch reflex) and non-neural (soft tissue changes) to "spasticity"
 This variability is found before age 3

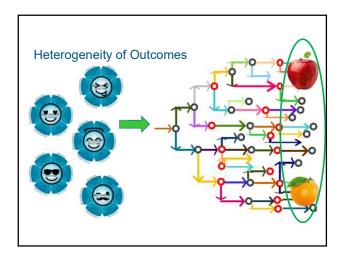
Willerslev-Olsen, 2013. Passive muscle properties are altered in children with cerebral palsy before the age of 3 years and are difficult to distinguish clinically from spasticity.

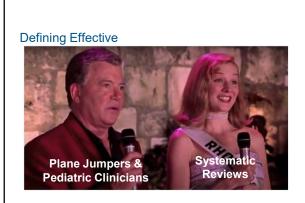


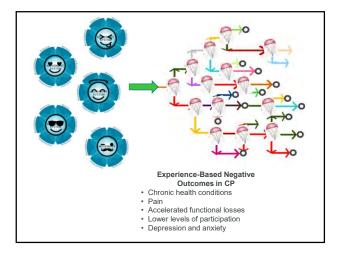
• 80% had soft tissue changes



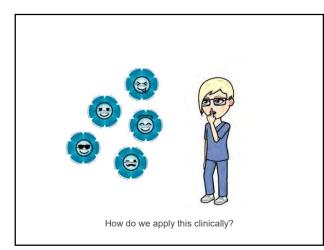








Marc Lawrence, Katie Ford, Caryn Lucas. Miss Congeniality. Warner Bros. Pictures, 2000.



Evidence Informed Practice Precision Health and Rehabilitation

- "Everything that a person experiences... as well as what their parents and grandparents experienced... from childhood stress, to educational opportunities, to lifestyle habits—converges on their genetic code through the epigenome to influence health, disease, and quality of life." Precision Rehabitation: How Lifeong Healthy Behaviors Modulate Biology, Determine Health, and Affect Populations (Shields 2022)
- "Physical therapy stands at the intersecting frontiers of biologic, behavioral, and population health research, making it an ideal environment for precision rehab to thrive." *PTI issue on Precision Rehab-four Big Tokeaways*. https://www.apta.org/anticle/2022/01/3/pt/precision-rehab-collection

Physical Therapy, Volume 102, Issue 1, January 2022, Featured Collection: Precision Rehabilitation

Long-Term Goals

 Set LONG term goals for adult outcomes

 \rightarrow Build a lifespan plan of care based on:

- critical windows for experiences
- critical longitudinal experiences

Long-Term Goals

For the patient as an adult:

- Minimize **pain**
- Maximize overall wellness
- Maximize **structural resilience** of the movement system
- Maximize neuromotor function and access to varied movement options

Long-Term Goals

For the patient as an adult:

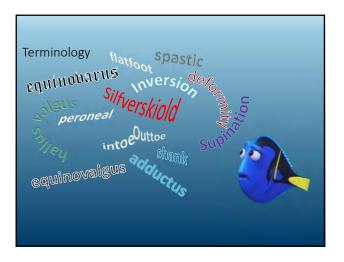
- Maximize the environments and activities the patient can access
- Maximize self-acceptance, self-determination, and self-efficacy
- Maximize the ability to **self-advocate** and access appropriate resources
- Maximize work and social engagement as an adult

Minimize negative sequelae of developing in the context of a pediatric health condition.

Short-Term Goals

- Musculoskeletal: Lessen the impact of cumulative microtrauma
 - Support hypermobile/at-risk structures
 - Direct healthy stress toward target structures
- Provide critical experiences during appropriate windows
 of development
- · Support regular fitness and wellness behaviors
- Neuromotor: Support motor learning and positive neuroplastic change
- Support self-determination and high-self efficacy

Clinical Application Examination


Shift from deficit perspective to resource perspective • Other-efficacy impacts self-efficacy


Examination:

- Resources of the individual
- Opportunities to add resource to the movement system

Manual: Goal setting tool

Terminology: Inconsistency - Neuromotor

Tone* Hypertonus* Dynamic spasticity* Flatfoot* Spastic* R1/R2*

*Used in current literature describing foot and ankle involvement in the **neurotypical** population

Terminology: Inconsistency

"You keep using that word. I do not think it means what you think it means." -Inigo Montoya

Challenges to EBP: Terminology

Inconsistency - Neuromotor

Passive muscle properties are contributing to perceived hyperreflexia in:

- Cerebral palsy
- Traumatic brain injury
- Hemiplegia
- Stroke

Terminology: Inconsistency - Neuromotor

Willerslev-Olsen et al. Passive muscle properties are altered in children with cerebral palsy before the age of 3 years and are difficult to distinguish clinically from spasticity. Dev Med Child Neurol 2013;55(7):617-623.

- Only 7/35 children determined as having spasticity via MAS/Tardieu had enhanced stretch reflexes with EMG.
- Enhanced stretch reflexes contributed to muscle stiffness in a **minority** of cases.
- Changes in passive muscle properties were much more frequently contributing.

Terminology: Inconsistency - Neuromotor

De Gooijer-van de Groep et al. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy. J Neuroeng Rehabil. July 2013:1743-0003.

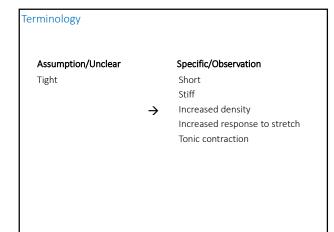
- "Ratios between the contribution of neural and nonneural components to ankle joint stiffness varied substantially within the group with CP".
- Even in a group the researchers had cohorted for their similarities and were relatively mildly affected.

Terminology: Inconsistency - Neuromotor

Bar – On et al. The relationship between medial gastrocnemius lengthening properties and stretch reflexes in cerebral palsy. Front Pediatr. 2018 Oct 4;6:259.

- Altered muscle lengthening properties and stretch reflex hyperactivity of children with CP was found to be *highly variable between individuals*.
- Authors suggested muscle stiffness may actually be a protective mechanism.

Terminology: Inconsistency - Neuromotor


Clin Biomech (Bristol, Avon). 2003 Feb;18(2):157-65. Velocity dependent passive plantarflexor resistive torque in **patients with acquired brain injury**. Singer BJ1, Dunne JW, Singer KP, Allison GT.

Harlaar et al, Passive stiffness characteristics of ankle plantarflexors in **hemiplegia**. Clin Biomech 2000

Dietz. Spastic **Movement Disorder**: Impaired Reflex Function and altered muscle mechanics. Lancet Neurol 2007

de Vlugt. The Relation Between Neuromechanical Parameters and Ashworth Score in **Stroke Patients**. J Neuroeng Rehabil 2010

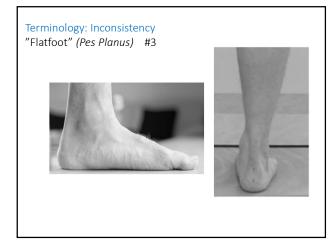
Terminology: Inconsis	stency - N	leuromotor	
Assumptions	→	Observations	
Assumptions	7	Observations	

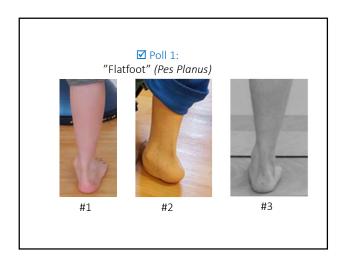
Terminology Assumption/Unclear Specific/Observation Tight Short Spasticity Stiff Hypertonia Increased density \rightarrow Hyperreflexia Altered response to stretch Guarding Tonic contraction Fixing Muscle contraction in _____ (muscles) with _____ (circumstance)

Terminology: Historical

☑ Poll 1:

Which clinical presentation is best described by the term:


Flatfoot (Pes Planus)



Terminology: Inconsistency "Flatfoot" (*Pes Planus*) #2

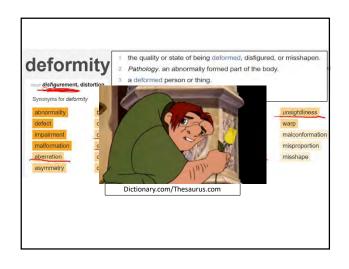
Terminology			
Incompatible definitions	÷	Differentiation	

Terminology: Historical

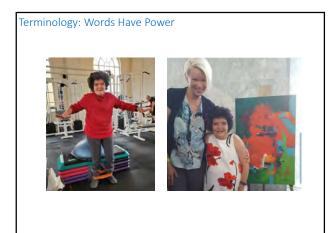
☑ Poll 2:

Which clinical presentation is best described by the term:

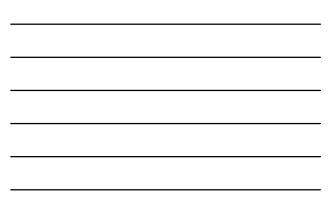
Equinus Deformity



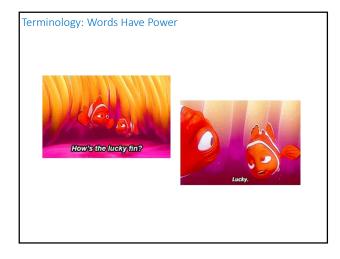
Terminology: Words Have Power

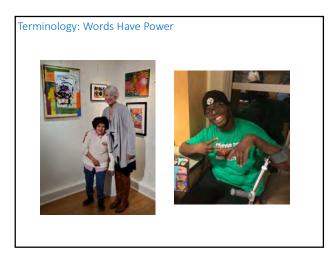

"Contracture" "Deformity"

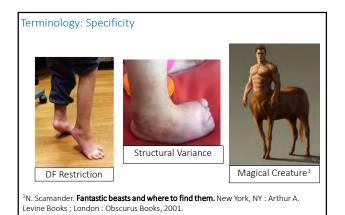
- Implied permanence
- Nocebo effect



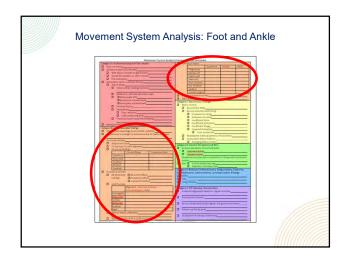
Terminology: Words	s Have Po	wer
Pejorative		Neutral "lay" meaning
Pessimistic	\rightarrow	Optimistic
Ableist		Positively googleable
Rude		Respectful




courte	tion [ri-strik-	shuhn] 🐗		SEE DEFINITION OF res
Synonyms for restrict	tion 2 the 3 the	nething that restricts; act of restricting. state of being restrict	a restrictive condition c	r regulation; limitation.
check	stipulation	cramp	limits	fine print
constraint	bounds	custody	lock	grain of salt
control	brake	demarcation	qualification	no-no
curb	catch	glitch	reservation	small difficulty
regulation	circumscription	handicap	stint	stumbling block
restraint	confinement	hang-up	string	
rule	containment	inhibition	ball and chain	



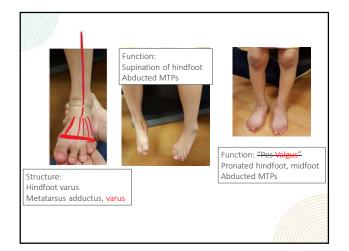
Terminology		
Equinus	÷	Plantarflexion
Deformity Contracture	→	Structural variance Restriction Limiting structure Quality of end feel
Flatfoot	→	Everted Pronated

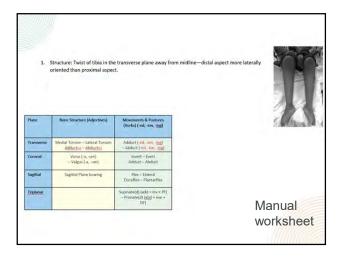


Terminology: Structure vs. Function

☑ Poll 3:

Which term describes the following patient's clinical presentation?





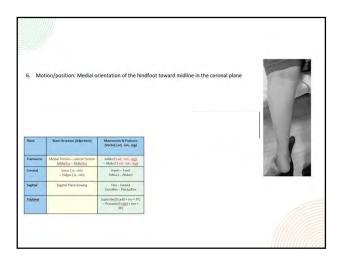
Plane	Bone Structure (Adjectives)	Movements & Postures (Verbs) (-ed, -ion, -ing)
Transverse	Med Torsion – Lat Torsion Adduct <mark>us</mark> – Abduct <mark>us</mark>	Adduct (- <mark>ed, -ion, -ing</mark>) – Abduct (- <mark>ed, -ion, -ing</mark>)
Coronal	Varus (-a, -um) – Valgus (-a, -um)	Invert – Evert Adduct - Abduct
Sagittal	Sagittal Plane bowing	Flex – Extend Dorsiflex – Plantarflex
Triplanar		Supinate(d) (add + inv + PF) – Pronate(d) (abd + eve + DF)

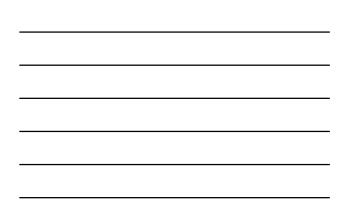
 _
_
_
_
_
—
_

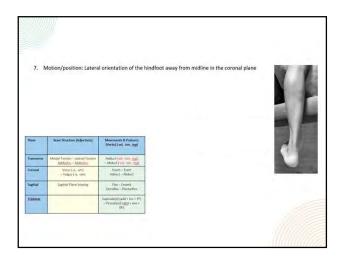
Ambulation, Activity,	and AFOs
-----------------------	----------

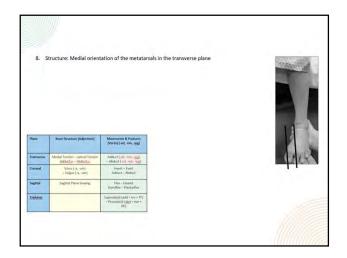
8	5
0	-

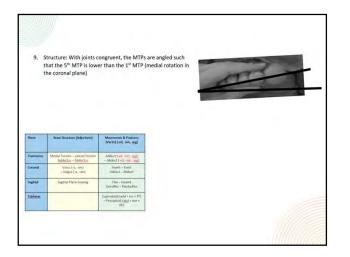
ane	Bone Structure (Adjectives)	Movements & Postures (Verbs) (-ed, -ion, -ing)		10-
ansverse	Medial Torsion – Lateral Torsion Adductus – Abductus	Adduct (-ed, -ion, -ing) - Abduct (-ed, -ion, -ing)		and a survey
oronal	Varus (-a, -um) Valgus (-a, -um)	Invert – Evert Adduct – Abduct		
gittal	Sagittal Plane bowing	Flex – Extend Dorsifiex – Plantarflex		
iplanar		Supinate(d) (add + inv + PF) - Pronate(d) (abd + eve + DF)		
		_		
				1000000
	Шл			
	/			
))			19
4. Stri	ucture: Curve of the tibia in	the coronal plane towa	d the midline (distal part is mo	ore
	ucture: Curve of the tibia in Idail)	the coronal plane towa	d the midline (distal part is mo	re.
		the coronal plane towa	d the midline (distal part is mo	re
		the coronal plane towa	d the midline (distal part is mo	re
		the coronal plane towa	d the midline (distal part is mo	re
me	dial)		d the midline (distal part is mo	re
		the coronal plane towo Movements & Postures (Verbal (+4, -ion, -ing)	d the midline (distəl part is mo	re
me	Bone Structure (Adjectives)	Movements & Postures [Verbs] (-icd, -ice, -ing)	d the midline (distal part is mo	re
me Plane	dial) Bone Structure (Adjectives) Medial Torsion – Lateral Torsion	Movements & Postures [Verbs] (+d, -ior, -ing] Addut (+d, -ior, -jog)	d the midline (distal part is mo	re
me Plane Transverse	Bone Structure (Mijectives) Medial Torsion - Lateral Torsion Adductus - Adorictio Vanni e_um)	Movements & Postures [Verba] (ed, -ion, -ing) Adduct (ed, -ion, -ing) Weith - Ever	d the midline (distal part is mo	re View

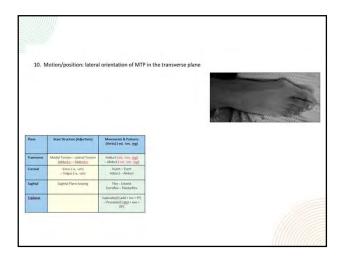

 Structure: Net orientation of the femur/tibia in the coronal plane away from midline (distal part is more lateral)

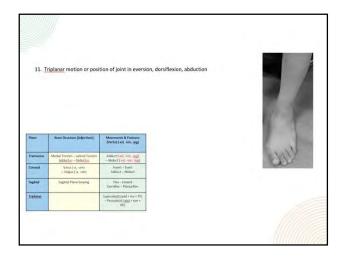

	ructure: Twist of the tibia ir edially oriented than proxir		ward midline—distal aspo	ect more
Plane	Bone Structure (Adjectives)	Movements & Postures (Verts) (.ed, .ion, .ing)	n.	
Transverse	Medial Torsion – Lateral Torsion Adductus – Abductus	Adduct (-ed, -ion, -ing) - Abduct (-ed, -ion, -ing)		
Coronal	Varus (-a, -sim) - Valgus (-a, -um)	invert – Evert Adduct – Abduct		
Sagittal	Sagittal Plane bowing	Flex – Extend Dorsiflex – Plantarflex		
Triplanar		Supinate(d) (add + inv + PF) - Pronate(d) (abd + eve + DF)		

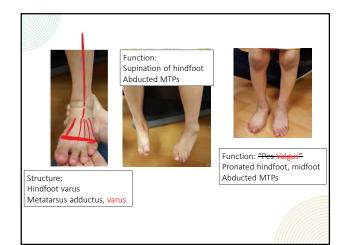


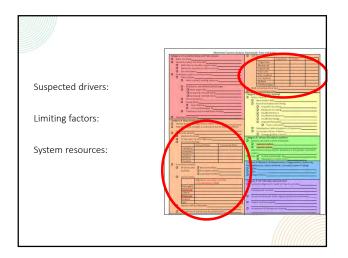

5. Struct	ure: with the talocrual and	outaiar joints congruent	, the <u>calcaneous</u> is oriented medially in the coronal plane.
_			
Plane	Bone Structure (Adjectives)	Movements & Postures (Verbs) (-ed, -ion, -ing)	
Transverse	Medial Torsion – Lateral Torsion Adductus – Abductus	Adduct (ed, -ion, -ing) - Abduct (ed, -ion, -ing)	
Coronal	Varus (-a, -um) - Valgus (-a, -um)	livvert – Evert Adduct – Abduct	
Sagittal	Sagittal Plane bowing	Flex – Extend Dorsiflex – Plantarflex	
Triplanar		Supinate(d) (add + inv + PF) - Pronate(d) (abd + eve + DF)	

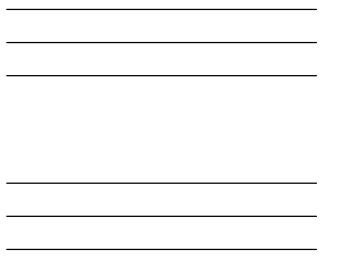








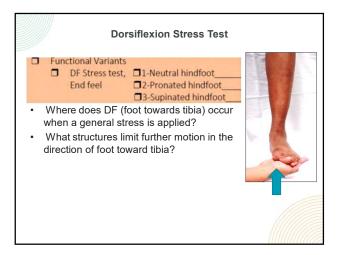




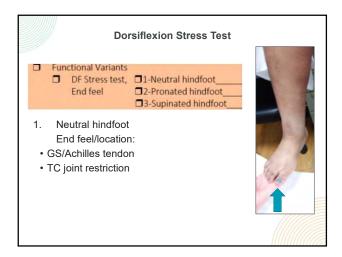
$\mathsf{Deficits} \textbf{ } \textbf{ } \mathsf{Resources}$

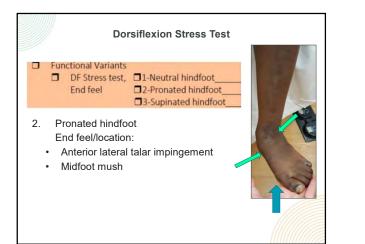
Shift from deficit perspective to resource perspective

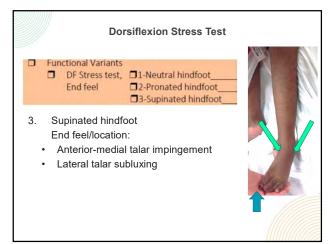
- Resources of the system
- Opportunities to add resource to the system

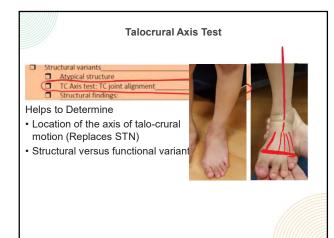


Exam: Musculoskeletal


Key Tests


- 1. Dorsiflexion Stress Test: Function
- 2. TC Axis Test (Talocrural Axis Test): Structure


		E	xam: Musculoskeletal	
	D Fun	ctional Variant	s	
	0	DF Stress test	, D1-Neutral hindfoot	
	1	End feel	2-Pronated hindfoot	
			3-Supinated hindfoot)
		Joint function		
			Alignment, Joint play, End feel,	
			Arthrokinematics, ROM	
		Distal tib/fib		
		Talo-crural		
ĺ				
				111
L				1010111111772



Dorsiflexion Stress Test

Helps to determine

- path of least resistance for DF
- intra- and inter-joint relative flexibility
- · relative stiffness of muscle and connective tissue

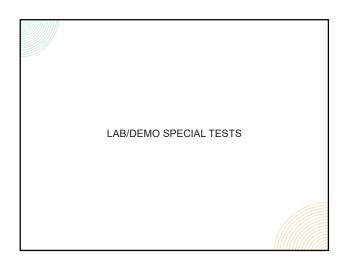
Talocrural Axis Test

Structural variants_ Atypical structure TC Axis test: TC Structural find Atypical structure TC Axis test: TC joint alignment Structural finding

- Allows you to assess "pure" TC motion without accessory joint motion
- Quality and quantity of motion specifically of the TC joint without contribution of accessory motion
- Limiting structures for TC DF to guide intervention

Ambulation, Activity, and AFOs

Midfoot joints are taken into the close-packed position (full supination) to isolate


Force goes through 5th ray, with closed-packed position of midfoot joints

Talocrural Axis Test

- Location of axis
- Range DF and PF
- Quality of motion
- Limiting structures
- End feel
- Location
- Quality

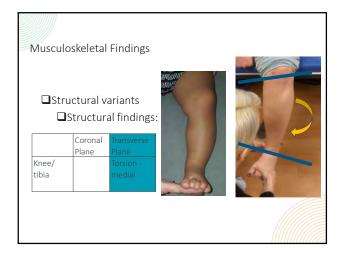
Musculoskeletal Findings

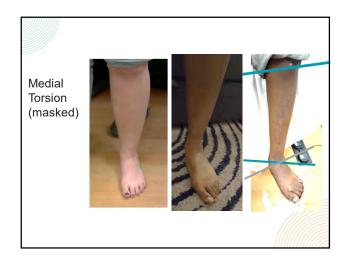
□Altered joint physiology due to health condition □Altered muscle strength or endurance due to health condition

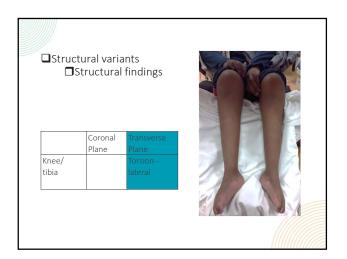
e.g. Reclined shank may be adaptive for stability in stance when knee extensors are compromised.

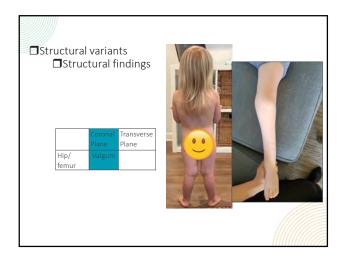
For those patients who have primary muscle weakness, you must mimic their self-selected shank angle in any orthosis.

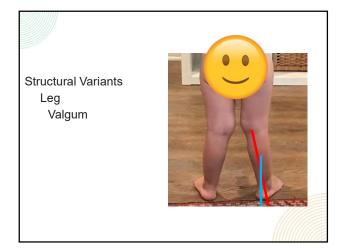
Musculoskeletal Findings

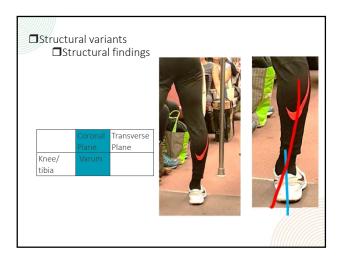

Structural variants

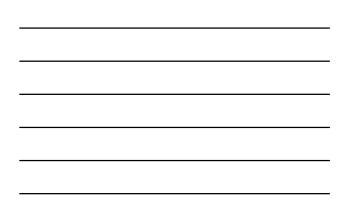

- □ Atypical structure
- Coalitions
- Presence or absence of structures
- Altered relative position of structures
- Altered shape of structures

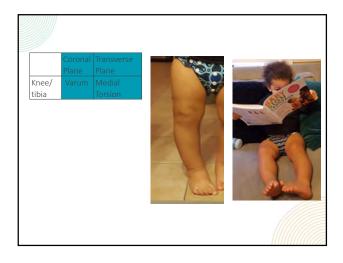


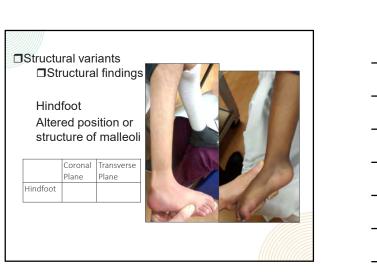




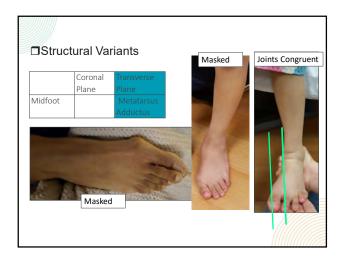


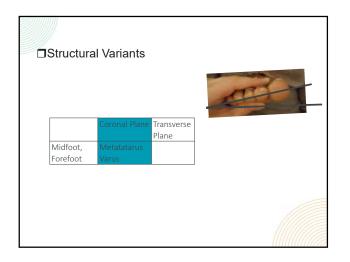


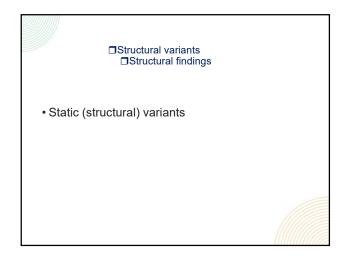


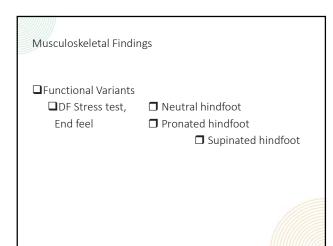


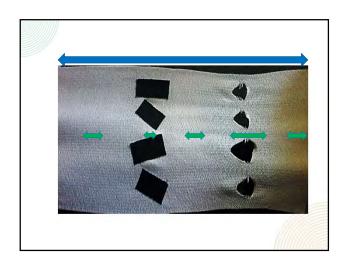












Musculoskeletal Findings

Functional VariantsDF Stress testEnd feel

- Where does DF (foot towards tibia) occur when a general stress is applied?
- What structures limit further motion in the direction of foot toward tibia?

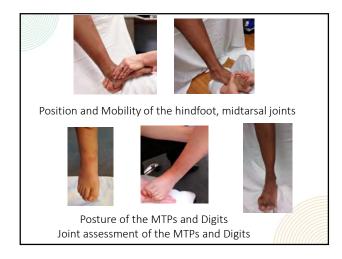
Musculoskeletal Findings

 Functional Variants
 DF Stress test
 2-Pronated hindfoot End feel/location:
 often anterior lateral talar impingement

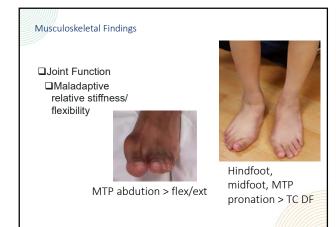
Musculoskeletal Findings

Functional Variants
 DF Stress test

- □3-Supinated hindfoot End feel/location:
- often anterior/medial talar impingement or lateral talar subluxing

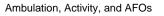

Joint Fu	nction	Com Col
	Alignment, Joint Mobility, End feel,	
	Arthrokinematics, ROM	
Distal		
tib/fib		
Talo-crual		
Subtalar		
Midtarsals		
Forefoot		
Digits		

Joint Fu		
	Alignment, Joint Mobility, End feel,	
	Arthrokinematics, ROM	
Distal tib/fib		
Talo-crural		
Subtalar		
Midtarsals		
Forefoot		
Digits		

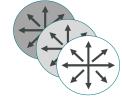

Muscul	oskeletal Findings
Joint F	unction
	Alignment, Joint Mobility, End feel, Arthrokinematics, ROM
Distal	
tib/fib	
Talo-crual	
Subtalar	
Midtarsals	STALL L
Forefoot	
Digits	

□Joint Function

Altered line of pull of muscles around joints



Post Tib: no lever arm to invert subtalar and transverse tarsal joints


EHL abducts vs. extends MTP

sculoskeletal F	indings		
	-		
Tissue Status	5		
	Superficial	Middle	Deep
Thigh/knee			
Medial calf			
Lateral calf			
Heel cord			
Post Hindfoot			
Ant Hindfoot			
Midfoot			

Soft Tissue Assessment

- Ability of tissues to lengthen, shorten, fold, glide and slide
- Multi-layer
- Multi-directional

Impacts of Limited DF: Neurotypical controls, Athletes, Neurotypical adults with chronic ankle stability

- The effect of reduced ankle dorsiflexion on lower extremity mechanics during landing: A systematic review. (Mason-Mackay 2017)
 Ankle DF range of motion and landing biomechanics. (Fong 2011)
 Effects of ankle dorsiflexion limitation on lower limb kinematic patterns during a forward step-down test: A reliability and comparative study. (Lebleu 2018)
 Effect effective and the destification of a step of the state of the stat
- Effect of limiting ankle-dorsiflexion range of motion on lower extremity kinematics and muscle-activation patterns during a squat. (Macrum 2012)
- · The association of dorsiflexion flexibility on knee kinematics and kinetics during a drop vertical jump in healthy female athletes. (Malloy 2015)
- Predictors of frontal plane knee excursion during a drop land in young female soccer players. (Sigward 2008)
- Ankle dorsiflexion range of motion influences dynamic balance in individuals with chronic ankle instability. (Basnett 2013)

Impact of Limited DF Range

Asymptomatic controls & athletes:

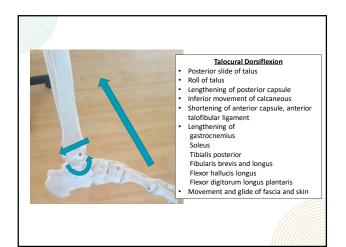
- Increased vertical ground reaction force
- Decreased shock absorption

Impact of Limited DF Range

Asymptomatic controls & athletes:

- Increased coronal and transverse plane displacement
- Greater peak knee abduction angles
- Greater peak knee abduction moments
- Increased medial rotation of hip
- Increased adduction of hip

Neurotypical adults with chronic ankle stability: • Decreased performance on *balance* testing



Impact of Limited DF Range

- Asymptomatic controls & athletes:
- Increased vertical ground reaction forceDecreased shock absorption

з

Interventions

Limited Range of Motion

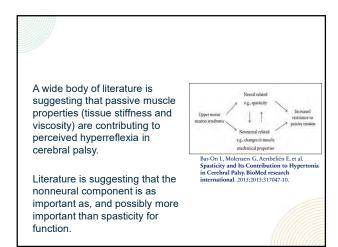
Manual therapy of ankle joints and soft tissues has been shown to improve:

- DF range
- Balance
- Functional goals

Manual Therapy

- Used to address:
- Hypomobilities/excessive stiffness
- Maladaptive intra- and inter-joint relative stiffness/ flexibility

Stanek 2018, An 2017, Marrón-Gómez 2015, Zicenzino 2006, Chevutschi 2015, Grieve 2013, Capobianco 2018, Capobianco 2019, Yoon 2014, Weerasekara 2018, Silveira 2016, Lee 2017, Kang 2015, Johanson 2014, Kim 2018, Kwon 2015


Interventions

Limited Range of Motion

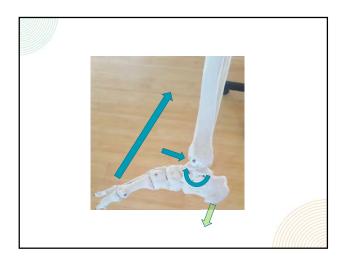
Populations

- Acute and chronic ankle instability in orthopedic/neurotypical population
- Athletes
- Adult stroke

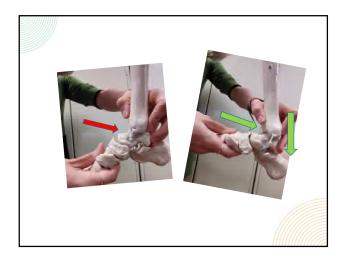
......Pediatric health conditions?

Ratios between the contribution of neural (stretch reflex hyper activity) and non-neural (soft tissue resistance) components to ankle joint stiffness **varies substantially between individuals with CP**.

- de Gooijer-van de Groep KL, de Vlugt E, de Groot JH, et al. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy. J Neuroeng Rehabil. 2013;10:81.
- Bar-On L, Kalkman BM, Cenni F, et al. The Relationship Between Medial Gastrocnemius Lengthening Properties and Stretch Reflexes in Cerebral Palsy. Front Pediatr. 2018;6:259.


Willerslev-Olsen M, Lorentzen J, Sinkjaer T, Nielsen JB. Passive muscle properties are altered in children with cerebral palsy before the age of 3 years and are difficult to distinguish clinically from spasticity. Dev Med Child Neurol. 2013;55(7):617-623.

- Only 7/35 children determined as having spasticity via MAS/Tardieu had enhanced stretch reflexes with EMG.
- Enhanced stretch reflexes contributed to muscle stiffness in a minority of cases.
- Changes in passive muscle properties (stiffness and viscosity) were much more frequently contributing.
- Large variation of the ratio of neural/nonneural contributions to increased resistance between individuals.


- Clin Biomech (Bristol, Avon). 2003 Feb;18(2):157-65.
 Velocity dependent passive plantarflexor resistive torque in patients with acquired brain injury. Singer BJ1, Dunne JW, Singer KP, Allison GT.
- Harlaar et al, Passive stiffness characteristics of ankle plantarflexors in **hemiplegia**. Clin Biomech 2000
- Dietz. Spastic Movement Disorder: Impaired Reflex Function and altered muscle mechanics. Lancet Neurol 2007
- de Vlugt. The Relation Between Neuromechanical Parameters and Ashworth Score in Stroke Patients. J Neuroeng Rehabil 2010

Body mechanics of hindfoot mobs

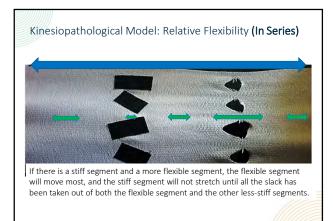
Dorsiflexion "for free"

- Gravity and physics provide stretch
- Heel in air, MTPs on knee
- Vertical tibia
- PT in line with TC joint
- Hands guide alignment

Interventions

Manual Therapy: Posterior Talar Glide with:

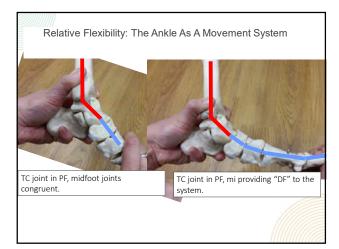
- inferior glide of
- calcaneous/talar complex
- joint distraction


Interventions

Manual Therapy: Posterior Talar Glide

with:

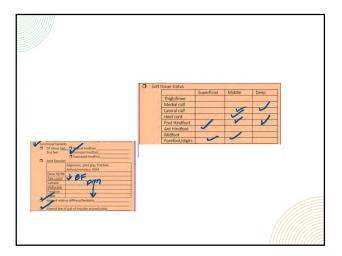
 inferior glide of calcaneous/talar complex
 joint distraction



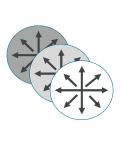
Interventions

Posterior Talar Glide with:

- Calcaneal inferior glide and triplanar guidance
- Guidance through navicular and cuboid



Ankle is a complex, multi-joint system movement system


- Hindfoot
- Talo-crural (talustibia/fibula)
 Subtalar (talus-
- calcaneous)
- Midfoot
- Talus-Navicular
- Calcaneous-cuboidNavicular-cuneiforms
- Cunieforms/cuboid-
- metatarsals

Soft Tissue Mobilization to Increase DF


- Ability of tissues to lengthen, shorten, fold, glide and slide
- Multi-layer
- Multi-directional

Manual Therapy Progression Pronated Posture

 Inferior/ inversion mobilization of calcaneus

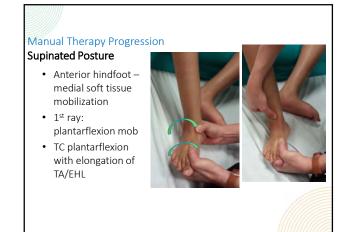
 Lateral/superior mobilization of navicular

Manual Therapy Progression Pronated Posture


• PF of 1st ray and midfoot with hindfoot stablized

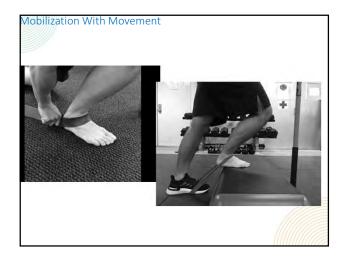
Manual Therapy Progression Pronated Posture

PF of 1st ray and midfoot with hindfoot stabilized

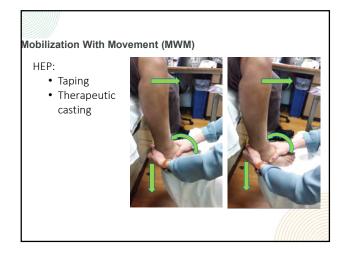


Manual Therapy Progression Supinated Posture

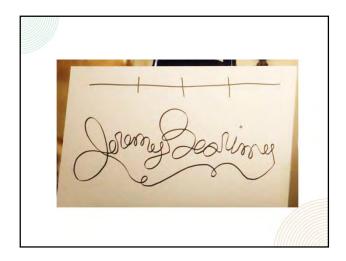
- Calcaneal inferior glide with eversion
- Posterior-medial talar mobilization


Manual Therapy Progression Supinated Posture

- Distraction with PF mobilization for midfoot and first ray
- Extension of MTPs
- Elongation of plantar fascia







Mobilization

Addressing -arthokinematics -range -limiting structures -end feel Dorsiflexion should always be "for free"

Musculoskeletal Assessment and Manual Therapy Lab

1. Weightbearing functional assessment

Standing

Assessment of standing alignment

Apparent structural variants (varus/valgus)

Shank/thigh angles (sagittal plane)

Resting weightbearing positions (coronal and transverse planes)

- Knees
- Hindfoot
- □ Toe-in/Toe-out
- □ Midfoot
- Digits
- Pelvis
- □ Spine
- □ Shoulders

Knee tracking with mini-squatting

- C Knees
- **G** Functional axis of dorsiflexion
- Balance strategies
- **DF** lunge test (knee to desk test)

2. Mat eval

- □ Mechanics: position of the patient, position of the therapist
- □ Integumentary Assessment

Scars

Color

Temperature

Wrinkles/creases

Dryness

Edema

Blanching, especially with corrected position

D Response to handling, touch

Techniques to address patient stress, guarding, and tonic muscle contraction

- Unweighting
- Deep pressure
- Contact on the active structures
- Movement into tone-inhibiting positions

(NOT yelling at them to relax)

- **D** Soft tissue:
 - Winding of the tissues

Gastrocsoleus/med/lateral muscle groups: length, extensibility, elasticity, trigger points

- Superficial fascia
- Achilles tendon
- Stiff points
- What structures are limiting more DF?

Joint assessment

Mechanics: position of the patient, position of the therapist

- **D F** Stress test
- TC axis test
 - Positioning yourself to be in line with the patient's TC joint
 - identifying structural and functional variants of your lab partner
- Midfoot
- Digits

Goniometry

- **D** For participants appropriate for mobilization: pre-test of PROM
- □ Functional DF vs. hindfoot DF

3. Mobilizations

Mechanics: position of the patient, position of the therapist

- Positioning yourself to be in line with the patient's TC joint
- Identifying structural and functional variants of your lab partner (new partner)
- DF Stress test: tells you how to modify the mobilization to protect fragile structures

Soft tissue mobilizations

- Investigation of the layers
- NM: what relaxes the person?
- How do they respond to touch, to manual therapy?
- What decreases their guarding/tonic contractions?
- How do they respond to touch, to manual therapy?
 - Winding of the tissues
 - Gastrocsoleus/med/lateral muscle groups: length, extensibility, elasticity, trigger points
 - Layers of fascial restrictions

Superficial fascia Achilles tendon Stiff points What structures are limiting more DF? Midfoot, digits

Instruments: vibration, percussion, dynamic cupping

Joint mobilizations

Distal Tib-fib

Talocrual

TC axis test: becomes the mobilization

DF Stress test: tells you how to modify the mobilization to protect fragile structures

Modifications:

Anterior talar impingement

Supinated hindfoot

Pronated hindfoot

Mobilization through the navicular

Subtalar

Inferior calcaneal

Inversion/eversion

Midfoot

Calcaneal-cuboid

Pronated foot: Lateral navicular

Midfoot joints

Supination/PF of the midfoot to allow for MTP extension mobility

MTPs

Distraction, safe lateral glides MTP extension

Digits

Goniometry

For participants appropriate for mobilization: post-test of PROM

Impact of Excessive Pronation:

Asymptomatic controls, runners:

Increased medial tibial rotation

Increased ipsilateral pelvic drop

Increased medial stress

Impact of Excessive Pronation:

Elite baseball players

• Increased shoulder involvement (surgery)

The association of foot arch posture and prior history of shoulder or elbow surgery in elite-level baseball pitchers. (Feigenbaum 2013)

Tonic & Phasic Motor Control

In efficient systems,

- Tonic (local, deep postural) muscles are recruited automatically to:
- Provide stability to withstand environmental or task demands
- Protect and guide joints to prevent shearing
- Stabilize locally and across the kinetic chain
- Phasic muscles (global movers) are recruited for action:
- Contract concentrically, eccentrically, or isometrically in a task-appropriate way

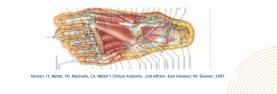
Tonic & Phasic Motor Control


In less efficient systems, we might see:

- 1. Phasic muscles tonically (sustained) contracting to compensate for lack of efficient deep postural muscle recruitment
- 2. Isometric or concentric versus eccentric function of muscles

Example:

Tonic hamstring contraction to stabilize pelvis when deep core muscles are under-recruited



з

Foot Core

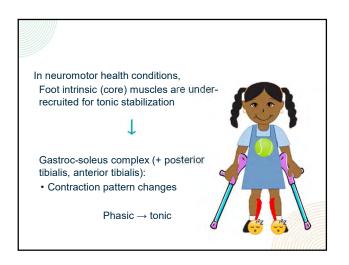
Mckeon, 2015. **The foot core system: a new paradigm for understanding intrinsic foot muscle function.** British Journal of Sports Medicine.

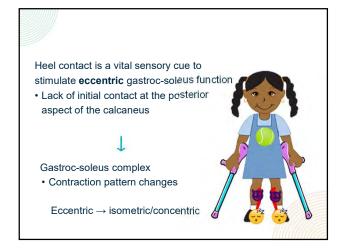
• Arch of the foot is controlled by both local stabilizers and global movers of the foot, similar to the lumbopelvic core.

What's unique about the ankle? Foot Core: Active Subsystem

- Local stabilizers ("foot core"):
- 4 layers of plantar intrinsic muscles that originate and insert on the foot.
- small moment arms and serve primarily to stabilize the multiple joints of the foot.
- act to control the degree and velocity of arch deformation with each foot step

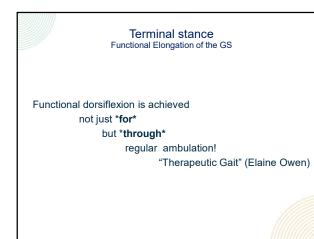
What's unique about the ankle? Foot Core: Neural Subsystem

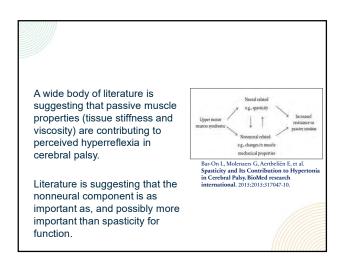

- Intrinsic muscles are advantageously positioned to provide immediate sensory information about changes in the foot posture, via stretch response
- Loss of alignment of the foot leads to loss of this information, leading to functional impairments:
- Decreased balance responses
- Negative neuroplastic changes


What's unique about the ankle? **Foot Core**

- The gastrocsoleus complex modulates tension in the plantar fascia based on the common connection to the calcaneus
- As tension in the gastrocsoleus complex increases, so does the tension in the planar fascia; the gastrocsoleus complex modulates the function of the foot intrinsics

Myers, Thomas W. Anatomy Trains. London: Urban & Fischer; 2014.

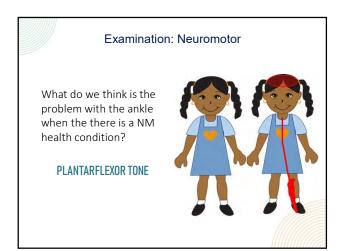




Neuromotor Examination

Instead of thinking muscles as bad (inhibit!) or good (facilitate!), we can look to increase the efficiency of muscle recruitment for function:

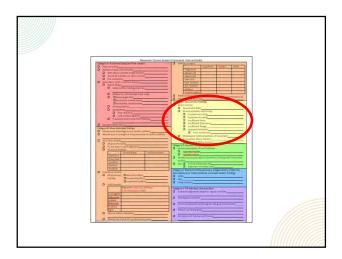
- Facilitate automatic recruitment of deep postural (tonic) muscles to *reduce tonic demand on phasic muscles*.
 Ankle: reduce tonic demand on the gastrocsoleus, posterior tibialis, and other global movers by increasing the capacity of the foot core
- Facilitate task-appropriate contractions, *concentrically*, *eccentrically*, *or isometrically* in a task-appropriate way
 Ankle: improve the capacity of the gastrocsoleus complex and other global movers to fire eccentrically when they have been habitually been firing concentric or isometrically



The Tone Fallacy in CP

Willerslev-Olsen M, Lorentzen J, Sinkjaer T, Nielsen JB. Passive muscle properties are altered in children with cerebral palsy before the age of 3 years and are difficult to distinguish clinically from spasticity. Dev Med Child Neurol. 2013;55(7):617-623.

- Only 7/35 children determined as having spasticity via MAS/Tardieu had enhanced stretch reflexes with EMG.
- Enhanced stretch reflexes contributed to muscle stiffness in a minority of cases.
- Changes in passive muscle properties (stiffness and viscosity) were much more frequently contributing.
- Large variation of the ratio of neural/nonneural contributions to increased resistance between individuals.



- Clin Biomech (Bristol, Avon). 2003 Feb;18(2):157-65. Velocity dependent passive plantarflexor resistive torque in **patients with** acquired brain injury. Singer BJ1, Dunne JW, Singer KP, Allison GT.
- Harlaar et al, Passive stiffness characteristics of ankle plantarflexors in
 hemiplegia. Clin Biomech 2000
- Dietz. Spastic Movement Disorder: Impaired Reflex Function and altered muscle mechanics. Lancet Neurol 2007
- de Vlugt. The Relation Between Neuromechanical Parameters and Ashworth Score in **Stroke Patients**. J Neuroeng Rehabil 2010
- Nielsen JB, Willerslev-Olsen M, Christiansen L, Lundbye-Jensen J, Lorentzen J. Science-Based Neurorehabilitation: Recommendations for Neurorehabilitation From Basic Science. Journal of motor behavior. 2015;47(1):7-17.

Examination: Neuromotor

• Okay so "tone" is more complex than we thought, and might not be the driver of dysfunction...

$\mathsf{Deficits} \textbf{ } \textbf{ } \mathsf{Resources}$

- Shift from deficit perspective to resource perspective
- Resources of the system
- Opportunities to add resource to the system

Examination: Neuromotor

Positive signs: "added on" versus Negative signs: "taken away"

Instead of just looking for "tone" (the positive sign) \rightarrow Let's investigate for the negative signs

Examination: Neuromotor

• More than just "tone" Selective Motor Control

Ability to:

- Initiate contraction
- Maintain contraction against required force
- Relax
- · Time and coordinate movement

Examination: Neuromotor

• More than just "tone"

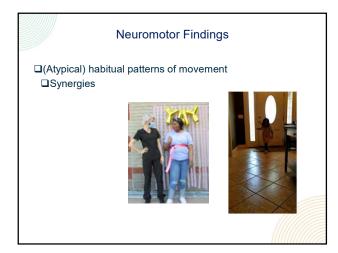
Automatic Motor Control

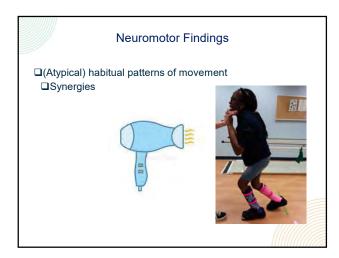
 Automatic recruitment of appropriate stabilizing (tonic) muscle groups to stabilize locally and across the kinetic chain.

Neuromotor and Motor Control Findings

Muscle activation and timing
 Impaired recruiting
 Excessive recruiting
 Insufficient Force
 Insufficient Endurance
 Insufficient Range

Neuromotor and Motor Control Findings

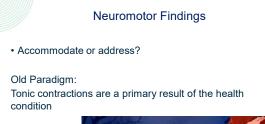

Tests for Foot Core Function


- Paper grip test for foot intrinsics
- 1st digit
- Digits 2-5
- Intrinsic positive test
- Lift 1st toe without 2-5 lifting
- Lift 2-5 without 1st toe lifting
- Toe splaying: spread the toes laterally

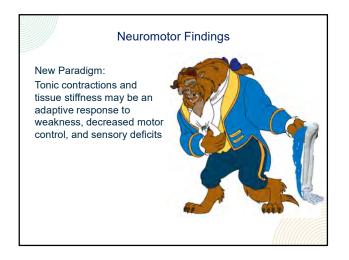
Neuromotor and Motor Control Findings

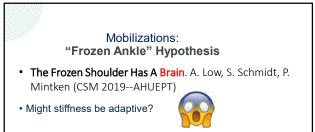
Impaired Relaxation

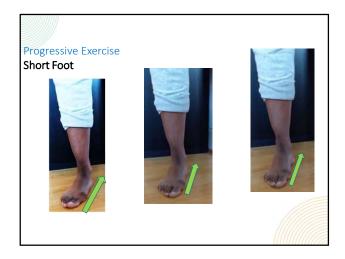
□Tonic contraction In which muscle groups? Under what conditions?


Neuromotor Findings

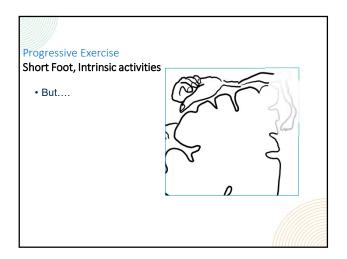
Consistency: does the patient show emerging MN control?


Balance Strategies: ability to:


- Anticipate balance challenges
- Maintain safe posture
- Stabilize joints to prevent damage
- Adjust to the contact surface
- Coordinate global movers and stabilizers for function



• We must provide the system with an adaptive path to stability if we are to add degrees of freedom.


Improving Foot and Ankle Motor Control

Foot intrinsics

- Paper grip test \rightarrow activity
- Great toe
- Digits 2-5
- Approximating through the knee to avoid excess PF

Foot intrinsics

- Intrinsic positive test
- Lift great toe without lesser toes lifting
- Lift digits 2-5, keep 1st on surface
- Toe splaying

Improving Motor Control: Observation and Imagery

- Progression

 Action observation
 - Adult model • Peer model
 - Live
 - Video
 - Avatar
- Self model: mirror therapy
 Video editing for self-modeling APPTAC 2021: Liliane Savard, PT, DPT, PCS, PhD(c), Melissa Houser, MD
- Motor imagery
- Motor performance

Improving Foot and Ankle Motor Control Electric Stimulation

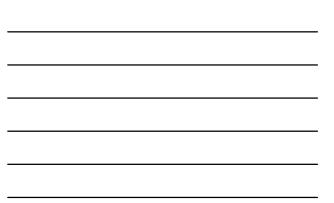
- Progression
- Non-weightbearing
- Weightbearing in sitting
- Semi-standing
- Sit to stand
- Progression within controlled range

Improving Foot and Ankle Motor Control Enhanced Feedback for Motor Exploration

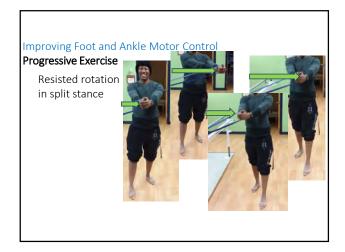
Use of technology to increase:

FeedbackOpportunities for

success Novel activities


Placement

Timing


Short foot

Sitting

Semi-standing

With visual feedback

Resisted rotation in split stance

Improving Foot and Ankle Motor Control **Progressive Exercise**

Resisted diagonal step-down*

• Progression:

Sitting

- Semi-standing
- Standing with UE a
- SLS

Resisted diagonal step-down

- Sitting, semi-standing
 - Direct assist/cues for alignment of stance foot

Improving Foot and Ankle Motor Control **Progressive Exercise**

Resisted diagonal step-down

- Sitting, semi-standing
 - Indirect assist to align stance limb

Improving Foot and Ankle Motor Control

Progressive Exercise

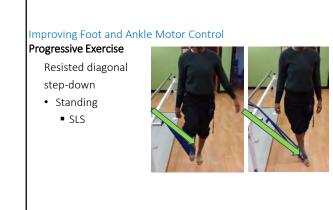
Resisted diagonal step-down

• Sitting, semi-standing

No assist

Resisted diagonal step-down

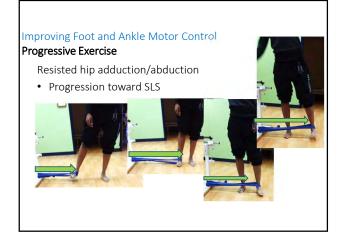
 Standing
 Assist to align stance foot

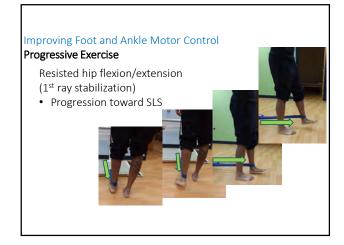

Improving Foot and Ankle Motor Control

Progressive Exercise Resisted diagonal step-down

• Standing

 Standing with UE support





Resisted diagonal

- step-down

 Standing
 - Demi pointe
 - Pointe

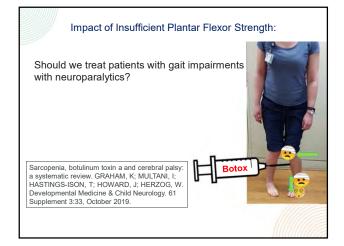
Lab

- 1. Resisted rotation in splint Re-test short foot stance
- 2. Resisted side step
- 3. Resisted diagonal step down *
- 4. Resisted hip flexion/extension
- 5. Resisted hip abduction/adduction
- 6. Resisted hip flexion/extension

Impact of Insufficient Plantar Flexor Strength:

Neurotypical adults :

- Increased medial knee displacement
- Functional ankle instability
- Increased medial arch loading
- Increased incidence of ankle and knee injury



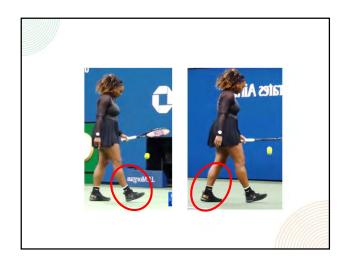
Impact of Insufficient Plantar Flexor Strength:

Neurotypical adults :

- Increased medial knee displacement
- Functional ankle instability
- · Increased medial arch loading
- Increased incidence of ankle and knee injury

What's unique about the ankle? Therapeutic Gait

- Terminal stance
- Dorsiflexion
- Knee extension
- Hip extension
- Functional elongation of:
- GS
- Hip flexors


What's unique about the ankle? Therapeutic Gait

- Initial contact
- Dorsiflexion
- Knee extension
- Hip flexion

Functional elongation of:

- GS
- HS

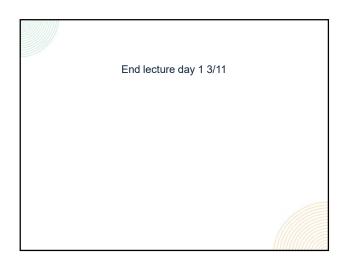
Muscles - Plantarflexors

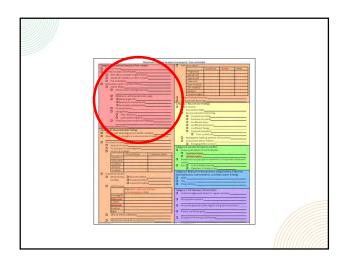
• Gastrocnemius, Soleus (complex)

- plantarflexes ankle
- flexes knee (gastrocnemius)
- extends knee! (closed chain)
- slows advancement of the tibia during loading response into midstance
- main driver of the limb from stance into swing

Muscles - Plantarflexors

- Gastrocnemius, Soleus (complex)
 - eccentrically controls dorsiflexion for descending stairs

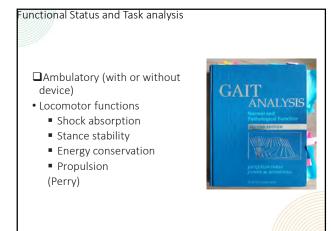

Best predictors of GMFM 66 scores:


- Hip abductor strength
- Ankle plantar flexor strength

Ross SA, Engsberg JR. Relationships between spasticity, strength, gait, and the GMFM-66 in persons with spastic diplegia cerebral palsy. Arch Phys Med Rehabil. 2007;88(9):1114-1120.

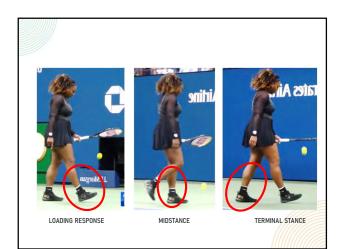
Eek MN, Beckung E. Walking ability is related to muscle strength in children with cerebral palsy. Gait Posture. 2008;28(3):366-371.

-						
	Locomotor functions Perry J, Burnfield JM. Gait Analysis : Normal and Pathological Function.					
	2nd ed. SLACK; 2010.					
	Gait Function	MVP				
	 Shock absorption 	• Hip abd, extensors, quad, GS, TA				
	Stance stability	Gastrocsoleus				
	Propulsion	Gastrocsoleus				
	Energy conservation	Gastrocsoleus				



Functional Status and Task analysis

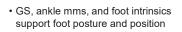
Stands but does not ambulate
 With device (stander or gait trainer)
 Stands for transfers or other function
 Pre-ambulatory



Let's go to the tape

Positive signs: "added on" versus Negative signs: "taken away"

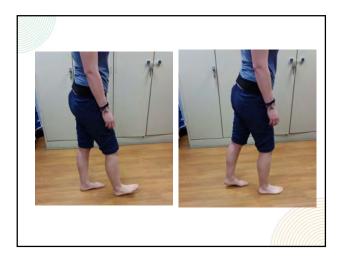
Instead of looking for "tone" (the positive sign) →Let's investigate for the negative signs

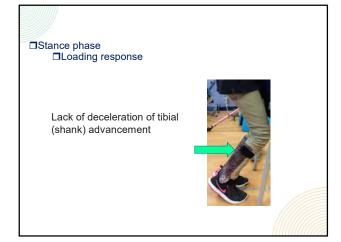


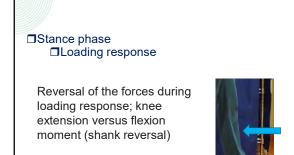
loading response

Efficient LR

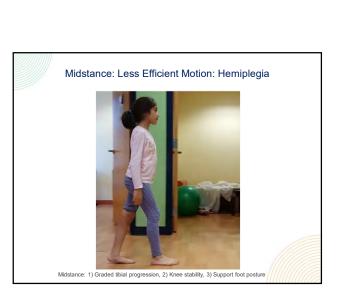

 GS, knee extensors, hips extensors/external rotators control Ground Reaction Force (shock absorption)






Functional Status and Task analysis

 Ambulatory (with or without device)
 Stance phase
 Loading response
 --Eccentric Control of tibial advancement



Functional Status and Task analysis

□Ambulatory (with or without device) □Stance phase

□Midstance: self-selected shank angle

- 1- Shank ankle WFL
- □ 2- Excessively inclined shank
- \square 3- Excessively reclined shank

11-Shank Angle WFL

Weight line: Anterior to the knee Posterior to hip Mild incline of the shank

D1-Shank Angle WFL Movement system not impacted proxi foot/ankle e.g. Toe Walking

□1-Shank Angle WFL

Movement system is able to compensate for any changes at the foot/ankle

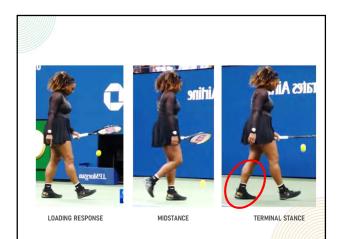
The greater movement system is *driving* the change in the foot/ankle

-or-

2-Excessively inclined shank (crouch) Weight line

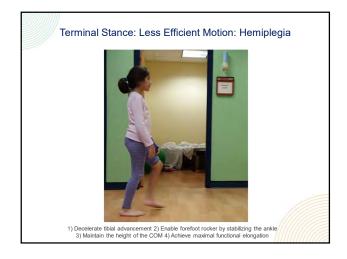
- anterior to hip
- posterior to the knee

□ 3-Excessively reclined shank (knee hyperextension)


Weight line

• anterior to hip


• anterior to the knee



Terminal Stance

Dorsiflexion with hip and knee extension?

*Requisite of Therapeutic Gait. (Owen)

MTP extension with pre-swing?

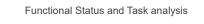
Terminal stance Functional Elongation of the GS

Functional dorsiflexion is achieved

not just ***for***

but ***through*** regular ambulation!

"Therapeutic Gait" (Elaine Owen)


Willerslev-Olsen 2013:

Passive muscle properties are altered in children with cerebral palsy before the age of 3 years *and are difficult to distinguish clinically from spasticity. Dev Med Child Neurol.*

Terminal stance Functional Elongation of the GS

- Functional DF range and GS muscle extensibility is achieved through regular ambulation
- Anyone lacking this movement experience is at risk for restricted DF and tissue changes
- Foot and ankle impairments in most pediatric health conditions are sequelae of the lack of therapeutic gait

□Swing phase

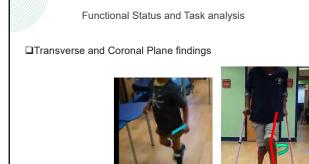
- Foot clearance
- Step Length

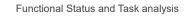
Functional Status and Task analysis

❑Swing phase

Limb positioning at Terminal Swing Initial contact at heel with hip flexion a extension?

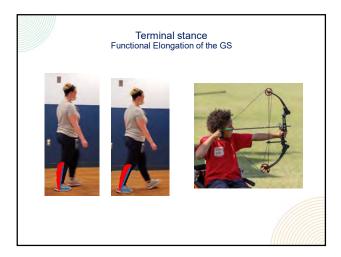
*Requisite of Therapeutic Gait.

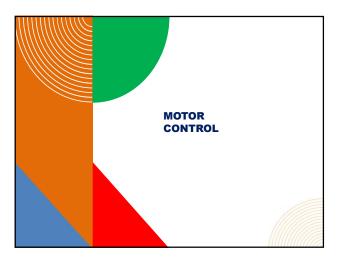


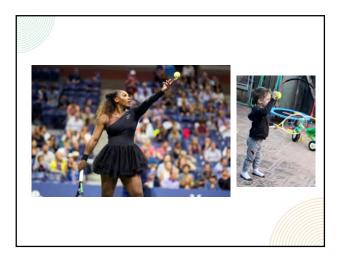


□Swing phase

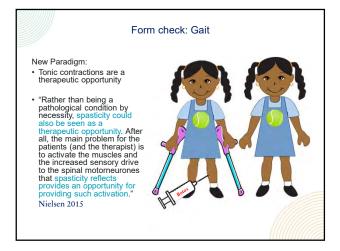
Limb positioning at Terminal Swing




□Lifespan Status Goals related to movement experiences based on current lifespan status and expected changes.



Form check: Gait


Old Paradigm:

• Tonic contractions are a primary result of the health condition and are the limiting factor for functional progress

New Paradigm:

• Tonic contractions and tissue stiffness are often a (mal)adaptive response to weakness, decreased motor control, and sensory deficits

Sarcopenia, botulinum toxin a and cerebral palsy: a systematic review. GRAHAM, K; MULTANI, I; HASTINGS-ISON, T; HOWARD, J; HERZOG, W. Developmental Medicine & Child Neurology. 61 Supplement 3:33, October 2019.



